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in this regime NN Ets can effectively be replaced by
linear models

n
f

s s

i

ng
1storderTaylor inmate correct

I É
tintin IRP

1 Are NNETS in practice turned in the linearregime
Sometimes mostly not

2 Does linear theory capture what can be achieved by
NNE Ts

No

3 Do we have a better theory understand both optimization

Not yet and generalization

wearregime explains why Go 1500 con find a global

optima of a highly non coven problem

successfully illustrated ITRACTABILITYVLAOVERPARAMETRIZATION1
no problembecomes more tractable as of parameters 7



since then lotsofwork toshowthe limitation oflinear
regime theory to explain good generalization ofNNET

Mostof the theoretical work show in specific examples that
NNETS outperform linearized NN Ets

This results are called separation results
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Intuition in high din yup K Wi Wal e Fd
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no good feature of wi n toapproximate awn
when 1stlayerisnot fined can select good features

ie w highcorrelatewith w

Kind of obvious and not interesting the fact that you
can approximate does not mean thatyou can efficiently

find these goodnetworks

Want a separationbetween linearized N NET and NN Ets
that can be constructedinproctugusing GO

SeggynbetweenlinearizedNNETsandgradientkained

Inner Prod kernel infinite linearized NNET
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very simple case butalready very technicalproof

In general studying NN Ets trained by GD is

currently outof reach except in the linear regime

Can we understand the benefitof training more

abstractly
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Linear regime kernel regime lazy regime

outnegine feature learning regime
rich regimes

Vastly different behavior between fined feature finedkernel

and methods that allow feature learning

they are adaptive and can vastlyoutperform
fined feature models
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What is the performance of KRR
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is adoptive to smoothness of the function
smoother fits will be easier to fit
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Conde
No theseclassesof fits are toobig plagueby thecurseofdim

Need to restrict to a smaller class of fit

Interestingdonoffits stgCbn V epi'd seed

felt that only depend on se on a low dimensional

projection
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flowenNNetbukkemeddimensionalityonfits thatonly depend on a low din projectionofthedata

HoweverFisnottneckelle hard problem

can think aboutGD as approximately solving Fe

mi general do notexpect GD to solve Fa problems
not the right implicit bias

approximately F problem

Implicit bias of GD forwide 2 heyers NNets
Chizat and Bach 2020

Linear regime Fa problem
one of dm
adaptive to smoothness

notadoptive to low dim
Sometimes project fets

Non linear dynamics Fi problem adoptive to smoothness

adaptive to low dinproject
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I ilearningporities
So far we saw

Limitation of kernel methods linearmodels
Feature learning necessary to break the curse of
dimensionality
One classical regime example GD fitting

underporometrizedtangle neuron with another neuron

More realistic example where we can study feature learning
with GI
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Hardness resultof learning parity fits with kernel methods

Prop AllenZhu etal 20203
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Rule 1 false is a degree k polynomial already impliedby
previous result if kernel is an inner product kernel
then need nz db samples

here very elementary proof for any kernel

2 f a Cre only depend on a low dimensional projectionof
dimension k

expect F problem to be able to efficiently leanEe

Prooff If time probablynot veryniceproof using only
elementary algebra

Leaming parities with neural networks
Amit Daniely and Even Moloch 2020

With slightly different distribution

classification setting lly y moult yg 0

2 layers NNets with Rehn activations
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1 Higher orderTaylor expansion around initialization

Dan Roberts et al 2021I
go ke ke ki

2 Can see GD dynamics as kernel dynamics with

A time varying kernel Ky n I I
can write ODE for Kt
hierarchy of ODEs with higherorderkernels
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endpaper on Multi layer MF

Marco Mondelli

generalized error of
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A FC multilayer NN
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