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I ‘Mysteries’ of Deep Learning:

I Optimization: training is a highly non-convex problem, but we are still able to find
near global optimizers.

I Generalization: overparametrized models. The solution often interpolates
the training data while generalizing well on test data.

I In this talk, I will focus on the connection between neural networks (NNs) and kernel
machines.
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Neural Tangent (NT) model

I Neural network: NNp(x ;θ), x ∈ Rd , θ ∈ Rp.
e.g., fully-connected neural network:

NNp(x ;θ) = 〈a, σ(. . .W 2σ(W 1x))〉.

I Linearization around random initialization θ0:

NNp(x ;θ) = NNp(x ;θ0) + 〈θ − θ0,∇θNNp(x ;θ0)〉+ o(‖θ − θ0‖2).

I Neural Tangent (NT) model: [Chizat et al.,’18], [Du et al.,’18]

NTp(x ;β,θ0) = 〈β,∇θNNp(x ;θ0)〉.

I Finite-width approximation of limiting kernel (p →∞ + iid initialization):

KNT(x , y) = Eθ0 [〈∇θNNp(x ;θ0),∇θNNp(y ;θ0)〉].
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GD trained NNs ≈ NT model in some regime

Coupled gradient descent on empirical squared loss:

d
dt

θt =−∇θÊ[(y − NNp(x ;θt))2], θ0 = θ0,

d
dt

βt =−∇βÊ[(y − NTp(x ;βt ,θ0))2], β0 = 0.

Theorem (informal)

For any ε > 0, for large enough NNs and proper random initialization θ0 (Xavier
initialization), we have with high probability

sup
t≥0

sup
‖x‖2=1

|NNp(x ;θt)− NTp(x ;βt ,θ0)| ≤ ε.

=⇒ Intuition: weights do not change much and ‖θt − θ0‖2 remains small.

[Jacot, Gabriel, Hongler,’18] , [Du, Zhai, Poczos, Singh,’18], [Du, Lee, Li, Wang, Zhai,’18],
[Allen-Zhu, Li, Song,’18] , [Zou, Cao, Zhou, Gu,’18], [Oymak, Soltanolkotabi,’18], [Chizat,
Oyallon, Bach,’19], ...
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The ‘Kernel Regime’

I Optimization success:

With sufficient over-parametrization and proper initialization, gradient descent on
training loss of NN converges linearly to global minimum.

I . . . but:
I Lazy Training: weights hardly change, there is ‘no feature learning’. [Chizat et al.,’18]
I Empirically, NNs perform often better than their linearized counterparts.

However, offer theoretical insights [Bartlett, Montanari, Rakhlin,’21]:
I Tractability via overparametrization.
I Explain some of the trade-off between overparametrization and generalization (benign

overfitting, double descent).
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New approach for kernel engineering

I Progress on CIFAR-10:

Paper Method Accuracy
[Coates, Lee, Ng,’11] feature learning + linear regression 77%
[Arora et al.,’19] CNTK (data independent) 77%
[Li et al.,’19] CRFK + data dependent preprocessing 89%
[Shankar et al.,’20] CRFK (data independent) 90%
- CNN > 99%

I NTK achieves near state-of-the-art results on UCI dataset [Arora et al.,’19].

Observations:
I NNs often outperform kernel methods.

I Kernel methods sometimes achieve comparable accuracy to NNs.

I Kernels induced by NNs perform much better than previous handcrafted kernels.
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Outline of the talk

Questions
I Why are kernel methods not as good as NNs in general?

I When can we expect kernel methods to perform well, comparable to NNs?

I Can we quantify the benefits of using convolutional kernels against inner-product
kernels (e.g., Gaussian kernel)?

Three ‘stylized’ scenarios:

A. Isotropic covariates model:
I large gap between NN and kernel methods.

B. Spiked covariates model:
I smaller gap between NN and kernel methods.

C. Invariant function estimation:
I quantify the benefits of convolutional kernels over inner-product kernels.
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A. Isotropic covariates model
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Setting

I Given n iid samples {(yi , x i )}i∈[n]:

yi = f?(x i ) + εi , x i ∼iid Unif(Sd−1(
√
d)), εi ∼iid N(0, τ2).

I Two-layers neural networks: NNN(x ;θ) =
∑N

i=1 aiσ(〈w i , x〉).

I Random Features model [Rahimi, Recht,’08]:

RFN(x ; a,W ) =
N∑
i=1

aiσ(〈w i , x〉) = 〈a,∇aNNp(x ;θ0)〉.

I Ridge regression with RF model (with fixed W = (w i )i∈[N] ∼iid Unif(Sd−1))

â(λ) = arg min
a

{
1
n

n∑
i=1

(
yi −

N∑
j=1

ajσ(〈w j , x i 〉)
)2

+ λ‖a‖22

}
.

Denote the solution R̂Fn,N,λ = RFN(·; â(λ),W ).
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Test error of RF model

Theorem (Mei, Misiakiewicz, Montanari, 2021)

Assume d`+δ ≤ min(n,N) ≤ d`+1−δ and | log(n/N)| ≥ δ log d , σ satisfies some generic
conditions and λ is small enough. Then,

‖f? − R̂Fn,N,λ‖2L2 =‖P>`f?‖2L2 + od,P(·).

P>`: projection orthogonal to the space of degree-` polynomials.

I For d` parameters and samples, RF fits the best degree-` polynomial approximation.

I n and N play a symmetric role:

Test error(n,N) = max
{
approx. error (n =∞,N), statistical error (n,N =∞)

}
.

I Statistical error (n,N =∞): kernel method with an inner-product kernel
K(x1, x2) = h(〈x1, x2〉/d) (e.g., NTK of fully-connected NNs of any depth).
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The truncated staircase decay

f = P0f + P1f + P2f + P3f + P4f .

Figure: Test error (in red) v.s. log(N)/ log(d) for n = d2.4 and λ = 0+. Train error in green.
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Performance gap between NN and kernel methods

I We expect NNs to perform way better on ‘low complexity’ functions

E.g., f?(x) = σ(〈w?, x〉): if N ∝ 1 and n ∝ d , then GD solution:

‖f? − N̂NN,n‖2L2 = od,P(·) [Bai et al.,’16]

while for KRR:
‖f? − K̂RN,n‖2L2 = ‖P>1f?‖2L2 + od,P(·).

I More generally we expect NNs to vastly outperform kernel methods for target
functions that only depend on a low dimensional subspace of the data [Bach,’17].

Intuition: fit ϕ(x1) using features σ(〈w i , x〉)

I For RF, w i ’s are random, corr(x1e1, 〈w i , x〉)2 = 〈w i , e1〉2/‖w i‖22 is small in HD.

I For NN, w i ’s can be chosen to have a large correlation with e1.

NN can ‘adaptively learn’ w i ’s while RF cannot.
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In the isotropic covariates model:

I Kernel methods suffer from the curse of dimensionality.

I For target functions that depend on a low dimensional projection of the data, NNs
can adaptively learn a good representation of the data and vastly outperform kernel
methods.
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B. Spiked covariates model
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Spiked covariates model

Covariate vector: orthogonal matrix [U ,U⊥]

x = Uz1 + U⊥z2, z1 ∈ Rds , z2 ∈ Rd−ds .

Signal part: z1 ∼ Unif
(
Sds−1

(√
snrc · ds

))
.

Noise part: z2 ∼ Unif
(
Sd−ds−1

(√
d − ds

))
ds = signal dimension.

snrc = covariate SNR.

Target function: f?(x) = ϕ(z1).

Figure: Isotropic covariates:
snrc = 1.

Figure: Anisotropic covariates:
snrc > 1.
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Test error of KRR in the spiked covariates model

I Given iid samples ({x i , yi})i∈[n] from the spiked covariates model.

I Effective dimension: deff = ds ∨ (d/snrc).

Theorem (Ghorbani, Mei, Misiakiewicz, Montanari, 2020)

Assume deff
`+δ ≤ min(n,N) ≤ deff

`+1−δ and | log(n/N)| ≥ δ log deff , σ satisfies some
generic conditions and λ is small enough. Then,

‖f? − R̂Fn,N,λ‖2L2 =‖P>`f?‖2L2 + od,P(·).

I deff capture the ‘effective low-dimensionality’ of the data.

I deff decreases with snrc (data more anisotropic) and kernel methods will perform
better.

I On the contrary, we expect NNs to learn features w i aligned with z1 and to depend
mildly on snrc .
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I On the contrary, we expect NNs to learn features w i aligned with z1 and to depend
mildly on snrc .
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NNs vs kernel methods in the spiked covariates model

Effective dimension: deff = ds ∨ (d/snrc).

In the spiked covariates model, we expect the generalization error of:

I Kernel methods to depend on deff ;
I NNs to depend on ds .

I ds ≤ deff ≤ d :
Test error: NN ≤ Kernel methods

I deff decreases with snrc :

I Isotropic features: deff = d (low covariate SNR)

Test error: NN � Kernel methods.

I Highly anisotropic features: deff = ds (high covariate SNR)

Test error: NN ∼ Kernel methods.
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Intuition for the gap: anisotropic case

Goal: fitting ϕ(x1) using features σ(〈w i , x〉).

Consider E[xxT] = diag(snrc , Idd−1 ).

I To fit ϕ(x1), we need to use features σ(〈w i , x〉) that are correlated to x1, i.e.,

corr(x1e1, 〈w i , x〉) = snrc ·
〈w i , e1〉2

‖Σ1/2w i‖22
= snrc · Od,P(d−1) = Od,P(deff

−1).

I For RF, when snrc is large, all random w i ’s are good.

I For NN, w i ’s can be chosen to have a large correlation with e1.

RF automatically have access to good w i ’s.
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Insight

Insight
Lower covariate SNR (data more isotropic) should lead to larger generalization gap

between NNs and kernel methods.

How to test this insight?

In image classification, we expect
I Images to have most of their spectrum concentrated on low-frequencies (z1 part);
I The labels to depend predominantly on the low-frequencies (y = f?(x) = ϕ(z1)).

Experiment: add noise to the high frequency components (z2 part) of the images (i.e.,
decreasing the snrc).

Adding noise in covariates should increase the generalization gap between NN and kernel
methods.
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Numerical simulations

Figure: Test accuracy on FMNIST: adding noise to the high frequency components.
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Spiked covariates model:
A controlling parameter of the performance gap between NN and kernel methods is

snrc = Covariate SNR =
Signal covariates variance
Noise covariates variance

.

I Small snrc : large separation.

I Large snrc : kernel methods perform closer to NN.

Intuition:

I When snrc is small, RF fail to find the signal covariates.

I When snrc is big, RF automatically find the signal covariates.

I NNs always look for the signal covariates.
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C. Invariant function estimation on the sphere
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Symmetries in the data

I In many learning tasks, the target function present some natural symmetries.

E.g., image classification: labels invariant under translation of the images.

I Effectiveness of NNs architectures is often loosely attributed to their ability to
encode various symmetries present in the data.

E.g., CNNs with translation invariance.

I CNNs perform better than fully-connected networks.

Convolutional kernels perform better than inner-product kernels.

I Can we quantify this gain?
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Cyclic function estimation on the sphere

I Data x ∼ Unif(Sd−1(
√
d)).

I Consider Gd = {g0, g1, . . . , gd−1} the cyclic group:

gi · x = (xd−i+1, xd−i+2, . . . , xd , x1, x2, . . . , xd−i ).

I Goal: learn a cyclic invaeriant function f?:

i.e., f?(g · x) = f?(x) for all g ∈ Gd .

E.g., f (x) =
∑d

i=1 xixi+1.

Stylized model for an image label y = f?(x) invariant by translation of image x .
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Invariant random features and kernels

I Invariant RF model:

RFinv
N (x ; a,W ) =

N∑
i=1

ai

∫
g∈Gd

σ(〈w i , g · x〉)π(dg) =
1
d

N∑
i=1

ai

d∑
k=1

σ(〈w i , gk · x〉).

Neural tangent model of a CNN with N filters w i ∈ Rd .
Associated invariant kernel:

Kinv(x , y) =

∫
g∈Gd

h(〈g · x , y〉/d)π(dg).

I Compared to standard RF model:

RFN(x ; a,W ) =
N∑
i=1

aiσ(〈x ,w i 〉),

and associated ‘standard’ (inner-product) kernel:

K(x , y) = h(〈x , y〉/d).
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Test error of KRR with invariant kernel

I Cyclic invariant f?: given iid samples {(yi , x i )}i∈[n],

yi = f?(x i ) + εi , x i ∼iid Unif(Sd−1(
√
d)), εi ∼iid N(0, τ2).

Theorem (Mei, Misiakiewicz, Montanari, 2021)

Assume d`−1+δ ≤ min(n,N) ≤ d`−δ and | log(n/N)| ≥ δ log d , σ satisfies some generic
conditions and λ is small enough. Then,

‖f? − R̂F
inv
n,N,λ‖2L2 =‖P>`f?‖2L2 + od,P(·).

I Standard RF model:

For d`+δ ≤ min(n,N) ≤ d`+1−δ, ‖f? − R̂Fn,N,λ‖2L2 = ‖P>`f?‖2L2 + od(·).

Gain a factor d in features and sample complexity by using invariant RF.

I More generally, for Gd with ‘degeneracy α’, we gain a factor dα.
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Numerical simulations

flin =
1√
d

d∑
i=1

xi , fquad =
1√
d

d∑
i=1

xixi+1, fcube =
1√
d

d∑
i=1

xixi+1xi+2.

1.0 1.5 2.0
log(n)/log(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

 e
rro

r (
no

rm
al

ize
d)

Cyclic linear target, d = 30
standard kernel
cyclic kernel

1.0 1.5 2.0
log(n)/log(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Cyclic quadratic target, d = 30

1.0 1.5 2.0
log(n)/log(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Cyclic cubic target, d = 30

Figure: Test error of KRR with invariant kernel and inner-product kernel.
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Cyclic invariant MNIST
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Figure: Test accuracy against number of samples (orange: cyclic kernel, blue: standard kernel).

Theodor Misiakiewicz (Stanford) Neural Networks and Kernel Methods April 28th, 2021 28 / 30



Summary

What I illustrated in this talk:

I Isotropic covariates model:
Kernel methods suffer from the curse of dimensionality and perform inferior to NNs
due to lack of feature learning.

I Spiked covariates model:
For large covariate SNR, feature learning is unecessary and kernel methods can also
perform well.

I Invariant function estimation:
Invariant kernels outperform standard kernels and we quantify the gain in statistical
efficiency.

All the results in this talk can be derived from a general framework for getting
high-dimensional asymptotics of test error of random features and kernel methods.

[Mei, Misiakiewicz, Montanari, ’21a].
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For large covariate SNR, feature learning is unecessary and kernel methods can also
perform well.

I Invariant function estimation:
Invariant kernels outperform standard kernels and we quantify the gain in statistical
efficiency.

All the results in this talk can be derived from a general framework for getting
high-dimensional asymptotics of test error of random features and kernel methods.

[Mei, Misiakiewicz, Montanari, ’21a].
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Open problems

I Show that NNs trained by gradient descent overcome the curse of dimensionality in
the spiked covariates model (using mean-field dynamics, see [Chizat, Bach, ’20]).

I What are other latent low-dimensional structure that we can study? (other than the
spiked covariates model)

I Using our general framework to study more complicated kernels.

I Data dependent kernel methods?

I Practical advantages of using kernel methods vs NNs? Transfer learning,
robustness...

I ...

Thank you!
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