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What functions can neural networks learn?

▶ NNs routinely solve high-dimensional problems.

▶ Learning general functions in HD is plagued by the curse of dimensionality.

▶ Hypothesis: NNs are good at learning functions with a latent low-dimensional
(sparse) structure.
▶ Approximation [Barron, 1993].
▶ Generalization [Bach, 2017].
▶ Computation: sparsity is not the right measure for computational complexity (above

papers do not provide efficient algorithms). We expect some sparse functions to be
easier to learn than others.
In practice, NNs are trained with SGD.

Which sparse functions are efficiently learned by SGD-trained NNs?
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Learning sparse functions on the hypercube

▶ Consider x ∼ Unif({+1,−1}d) and target function

f∗(x) = h∗(z) , z ∈ {+1,−1}P latent (unknown) support (P ≪ d).

▶ Examples:
h∗,1(z) = z1 + z1z2 + z1z2z3 , h∗,2(z) = z1z2z3 .

Are these functions equivalent for SGD-trained NNs?

▶ In the "lazy" regime (NTK regime), no adaptation to sparsity:

Proposition [Abbe,Boix-Adsera,Misiakiewicz]

Any linear method (NTK, kernel methods, random feature models...) require n = Ωd(d
P)

samples to learn any degree-P polynomial h∗.

▶ What about SGD in the feature learning regime?
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NNs trained in the mean-field regime

▶ Take 2-layer neural network with M neurons in the mean-field scaling Θ(1/M).

▶ Train with vanilla online SGD with step size η = Θ(1/d).

▶ Simulations with d = M = 300:

h∗,1(z) = z1 + z1z2 + z1z2z3 , h∗,2(z) = z1z2z3 .
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Can we characterize which sparse functions are learnable by SGD in O(d) steps?
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Merged staircase functions

Fourier coefficient for S ⊆ [P]: ĥ∗(S) = Ez

[
h∗(z)χS(z)

]
where χS(z) =

∏
i∈S zi .

h∗(z) =
∑
S∈Q

ĥ∗(S)χS(z) ,

where Q contains all non-zero Fourier coefficients ĥ∗(S) ̸= 0.

Merged-Staircase property (MSP)

h∗ : {−1,+1}P → R has the merged-staircase property (MSP) if we can write elements
of Q in order (S1, . . . , Sr ) such that for any j ∈ [r ], we have |Sj \ (S1 ∪ . . . ∪ Sj−1)| ≤ 1.

Examples of MSP functions:

h∗(z) = z1 + z1z2 + z1z2z3 + z1z2z3z4 ,

h∗(z) = z1 + z1z2 + z2z3 + z3z4 + z3z4z5 .

Examples of non-MSP functions:

h∗(z) = z1 + z1z2z3 + z1z2z3z4 ,

h∗(z) = z1 + z1z2 + z3z4 + z3z4z5 .
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[
h∗(z)χS(z)

]
where χS(z) =

∏
i∈S zi .

h∗(z) =
∑
S∈Q
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Main result

Theorem 1 [Abbe,Boix-Adsera,Misiakiewicz]

MSP is necessary and nearly sufficient∗ to learn h∗ in O(d) steps/samples of online
SGD∗∗ in mean-field regime.

∗Excludes a set of MSP fcts h∗(z) =
∑

S∈Q h∗(S)χS(z) with {h∗(S)}S∈Q of measure 0.
(This is unavoidable: some degenerate cases of MSP functions that are not learned)
∗∗For the sufficiency result, we train the first layer, then the second layer

Example
h∗,1(z) = z1 + z1z2 + z1z2z3︸ ︷︷ ︸
k=Od (d) online SGD steps is enough

, h∗,2(z) = z1z2z3︸ ︷︷ ︸
needs k ≫ d steps

.

Conjecture

For leap-ℓ MSP, k = Od(d log(d)) steps for ℓ = 2 and k = Õd(d
ℓ−1) for ℓ > 2.
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New technical tool: dimension-free dynamics

Previous work: SGD trajectory converges to "mean-field dynamics" (MF-PDE) in limit
of M → ∞ (large width), and η → 0 (large sample size).
[Chizat, Bach,’18], [Mei, Montanari, Nguyen,’18] [Rotskoff,Vanden-Eijnden,’18], [Sirignano,Spiliopoulos,’18]

MF-PDE is Wasserstein gradient flow on (d + 1) dimensions.
Difficult to analyze!

Our work: Target function f∗(x) = h∗(z) only depends on P input coordinates.

We approximate SGD trajectory by "dimension-free mean-field dynamics" (DF-PDE).

DF-PDE is Wasserstein gradient flow on (P + 2) dimensions.
More tractable since P is constant.

Theorem 2 [Abbe,Boix-Adsera,Misiakiewicz]

h∗ is learnable in O(d) steps in mean-field regime iff DF-PDE achieves arbitrarily small
test error in O(1) time.
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Numerical simulation of DF-PDE

Take d = 300 and train with SGD on a 2-layer NN with M = 300

h∗,1(z) = z1 + z1z2 + z1z2z3 , h∗,2(z) = z1z2z3 .
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Dashed line is DF-PDE prediction.
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Intuition

▶ Necessity result:
For non-MSP functions, like h∗,2(z) = z1z2z3, DF-PDE gets stuck in a saddle point.

▶ Sufficiency result:
For MSP functions, like h∗,1(z) = z1 + z1z2 + z1z2z3, the low-degree terms allow
escaping the saddle point.

Study layerwise training to make it tractable to analyze:
1 Train weights of layer 1 for a small time T1 = O(1).
2 Train weights of layer 2 for time T2 = O(log(1/ε)).

Proof ideas: Need to show kernel of layer 2 features is nonsingular after training of
layer 1. To show, Taylor-expand the DF-PDE, and use polynomial
anti-concentration.
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Conclusion and future directions

Summary
▶ Studied learnability in mean-field neural networks with O(d) samples of online SGD.
▶ For sparse functions, merged staircase property is necessary and nearly sufficient for

learnability in this regime.

Open problems:
▶ Beyond O(d) samples: conjecture leap-ℓ MSP captures complexity for O(dα)

samples.
▶ Beyond the binary hypercube: extension to more realistic data distributions.

Thank you!
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