Tutorial:

BO, Double Descent and RKHS ridge regression made easy!

Theodor Misiakiewicz (Stanford)

May 26th, 2022

New Interactions Between Statistics and Optimization workshop, BIRS.

Modern machine learning

- ▶ New regime for statistics: overparametrized models, no explicit regularization and capacity control, train until (near-)interpolation even with noisy data.
 - **New phenomenology:** benign overfitting, double descent, non-monotonic error curves.
- ▶ Phenomena already present in linear models [Belkin,Ma,Mandal,'18].
- ► This talk: **kernel ridge regression** (KRR) in the **high dimension regime**.

Goal of this tutorial is to show:

- 1. How to derive quickly asymptotics for kernel/random features ridge regression.
 - 2. How the above phenomena have very precise explanations in this regime.

Modern machine learning

- ▶ New regime for statistics: overparametrized models, no explicit regularization and capacity control, train until (near-)interpolation even with noisy data.
 - **New phenomenology:** benign overfitting, double descent, non-monotonic error curves.
- Phenomena already present in linear models [Belkin, Ma, Mandal, '18].
- ► This talk: kernel ridge regression (KRR) in the high dimension regime.

Goal of this tutorial is to show:

- 1. How to derive quickly asymptotics for kernel/random features ridge regression.
 - 2. How the above phenomena have very precise explanations in this regime.

Benign overfitting, self-induced regularization and double descent

Benign overfitting: interpolator generalizes well. Idea: $\hat{f} = f_0 + \Delta$ with f_0 smooth solution + spike part with $\|\Delta\|_{L^2} \ll 1$.

In linear models: **self-induced regularization**. Non-smooth part of the kernel plays the role of an effective ridge regularization.

(This is HD phenomena.)

▶ Double descent and non-monotonic curves.

Need exact test error that holds for a given function and is exact up to an additive vanishing constant.

Benign overfitting, self-induced regularization and double descent

▶ Benign overfitting: interpolator generalizes well. Idea: $\hat{f} = f_0 + \Delta$ with f_0 smooth solution + spike part with $\|\Delta\|_{L^2} \ll 1$.

In linear models: **self-induced regularization**. Non-smooth part of the kernel plays the role of an effective ridge regularization.

(This is HD phenomena.)

▶ Double descent and non-monotonic curves.

Need exact test error that holds for a given function and is exact up to an additive vanishing constant.

Some references

A subset of references:

- Benign overfitting: [Liang,Rakhlin,'18], [Ghorbani,Mei,M,Montanari,'19], [Bartlett,Long,Lugosi,Tsigler,'20].
- Double descent: [Mei,Montanari,'19], [Hastie,Montanari,Rosset,Tibshirani,'20], [Gerace,Loureiro,Krzakala,Mezard,Zdeborova,'20].
- Linear models: [Tsigler,Bartlett,'20], [Cui,Loureiro,Krzakala,Zdeborova,'21], [Liao,Couillet,Mahonev,'20], [Richards,Mourtada,Rosasco,'21], [Wu,Xu,'20].
- ► KRR: [Jacot,Simsek,Spadaro,Hongler,Gabriel,'20], [Canatar,Bordelon,Pehlevan,'21], [Mei,M,Montanari,'21], [Bartlett,Montanari,Rakhlin,'21], [Liu,Liao,Suykens,'21], [Liang,Rakhlin,Zhai,'21], [Hu,Lu,'22].

Quick background on KRR (1)

Covariates: $x \in (\mathcal{X}, \nu)$.

Kernel function: $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ PSD, associated kernel operator: $\mathbb{K}: L^2(\mathcal{X}) \to L^2(\mathcal{X})$:

$$\mathbb{K}f(\mathbf{x}) = \int_{\mathcal{X}} K(\mathbf{x}, \mathbf{x}') f(\mathbf{x}') \nu(\mathrm{d}\mathbf{x}').$$

Diagonalization: $\{\phi_j\}_{j\geq 1}$ orthonormal basis of $L^2(\mathcal{X})$ and $\{\lambda_j\}_{j\geq 0}$ nonincreasing $(\lambda_j>0)$

$$\mathbb{K} = \sum_{j\geq 1} \lambda_j \phi_j \phi_j^*, \qquad K(\mathbf{x_1}, \mathbf{x_2}) = \sum_{j\geq 1} \lambda_j \phi_j(\mathbf{x_1}) \phi_j(\mathbf{x_2}).$$

Feature map: $x \mapsto \Phi(x) = (\sqrt{\lambda_j}\phi_j(x))_{j \geq 1}$ so that $K(x_1, x_2) = \langle \Phi(x_1), \Phi(x_2) \rangle_{\ell_2}$

 L^2 space: for any $f_* \in L^2(\mathcal{X})$,

$$f_*(\mathbf{x}) = \sum_{j \geq 1} \beta_j \phi_j(\mathbf{x}) = \langle \boldsymbol{\theta}_*, \Phi(\mathbf{x}) \rangle_{\ell_2}, \qquad \boldsymbol{\theta}_* = (\theta_j)_{j \geq 1}, \qquad \theta_j = \beta_j / \sqrt{\lambda_j}.$$

Associated RKHS: $\mathcal{H} = \{ f \in L^2(\mathcal{X}) : ||f||_{\mathcal{H}} < \infty \}$,

$$||f||_{\mathcal{H}}^2 = ||\mathbb{K}^{-1/2}f||_{L^2}^2 = \sum_{j\geq 1} \frac{\beta_j^2}{\lambda_j} = ||\boldsymbol{\theta}_*||_{\ell_2}^2.$$

Quick background on KRR (2)

Data: $\{(y_i, x_i)\}_{i \in [n]}$ where $x_i \sim_{iid} (\mathcal{X}, \nu)$ and $y_i = f_*(x_i) + \varepsilon_i$, with $f_* \in L^2(\mathcal{X})$ and independent noise ε_i , $\mathbb{E}[\varepsilon_i] = 0$, $\mathbb{E}[\varepsilon_i^2] = \sigma_{\varepsilon}^2$.

Kernel ridge regression: fit the data with

$$\hat{f}_{\lambda} = \arg\min_{f} \Big\{ \sum_{i \in [n]} (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}}^2 \Big\}.$$

Equivalently: $\hat{f}_{\lambda} = \langle \hat{\theta}_{\lambda}, \Phi(\cdot) \rangle_{\ell_2}$ where for $\Phi = [\Phi(x_1), \dots, \Phi(x_n)]^{\mathsf{T}} \in \mathbb{R}^{n \times \infty}$,

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \Big\{ \sum_{i \in [n]} (y_i - \langle \Phi(\boldsymbol{x}_i), \boldsymbol{\theta} \rangle)^2 + \lambda \|\boldsymbol{\theta}\|_{\ell_{\mathbf{2}}}^2 \Big\} = \boldsymbol{\Phi}^\mathsf{T} (\boldsymbol{\Phi} \boldsymbol{\Phi}^\mathsf{T} + \lambda)^{-1} \boldsymbol{y} \,.$$

[Representer thm:
$$\hat{f}_{\lambda}(\mathbf{x}) = \sum_{i} \hat{a}_{i} K(\mathbf{x}, \mathbf{x}_{i})$$
 with $\hat{a} = (K + \lambda)^{-1} \mathbf{y}$, $K = (K(\mathbf{x}_{i}, \mathbf{x}_{j}))_{ij \in [n]}$.]

Goal: compute the test error $R(f_*, \hat{f}_{\lambda}) = \mathbb{E}_x[(f_*(x) - \hat{f}_{\lambda}(x))^2]$ in the high dimensional regime $x \in \mathbb{R}^d$ and $\log(n) \times \log(d)$.

Quick background on KRR (2)

Data: $\{(y_i, x_i)\}_{i \in [n]}$ where $x_i \sim_{iid} (\mathcal{X}, \nu)$ and $y_i = f_{\star}(x_i) + \varepsilon_i$, with $f_{\star} \in L^2(\mathcal{X})$ and independent noise ε_i , $\mathbb{E}[\varepsilon_i] = 0$, $\mathbb{E}[\varepsilon_i^2] = \sigma_{\varepsilon}^2$.

Kernel ridge regression: fit the data with

$$\hat{f}_{\lambda} = \arg\min_{f} \Big\{ \sum_{i \in [n]} (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}}^2 \Big\}.$$

Equivalently: $\hat{f}_{\lambda} = \langle \hat{\theta}_{\lambda}, \Phi(\cdot) \rangle_{\ell_2}$ where for $\Phi = [\Phi(x_1), \dots, \Phi(x_n)]^{\mathsf{T}} \in \mathbb{R}^{n \times \infty}$,

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \Big\{ \sum_{i \in [n]} (y_i - \langle \Phi(\boldsymbol{x}_i), \boldsymbol{\theta} \rangle)^2 + \lambda \|\boldsymbol{\theta}\|_{\ell_{\mathbf{2}}}^2 \Big\} = \boldsymbol{\Phi}^\mathsf{T} (\boldsymbol{\Phi} \boldsymbol{\Phi}^\mathsf{T} + \lambda)^{-1} \boldsymbol{y} \,.$$

[Representer thm: $\hat{f}_{\lambda}(\mathbf{x}) = \sum_{i} \hat{a}_{i} K(\mathbf{x}, \mathbf{x}_{i})$ with $\hat{\mathbf{a}} = (K + \lambda)^{-1} \mathbf{y}$, $K = (K(\mathbf{x}_{i}, \mathbf{x}_{j}))_{ij \in [n]}$.]

Goal: compute the test error $R(f_*, \hat{f}_{\lambda}) = \mathbb{E}_{\mathbf{x}}[(f_*(\mathbf{x}) - \hat{f}_{\lambda}(\mathbf{x}))^2]$ in the high dimensional regime $\mathbf{x} \in \mathbb{R}^d$ and $\log(n) \approx \log(d)$.

Gaussian equivalent model and universality of feature maps (1)

Ridge regression with features $\phi(x_i)$: function of random matrix resolvent.

For some "high dimensional" feature map, expect universality to happen: can replace $\phi(\mathbf{x})$ by Gaussian vector \mathbf{z} with matching first two moments.

Covariance matrix: $\mathbf{\Sigma} = \mathbb{E}_{\mathbf{x}}[\Phi(\mathbf{x})\Phi(\mathbf{x})^{\mathsf{T}}] = \mathrm{diag}((\lambda_j)_{j\geq 1}).$

Model	KRR:	Gaussian covariates model:
Distribution	$\Phi(x) = (\sqrt{\lambda_j}\phi_j(x))_{j\geq 1}$ with $x \sim \nu$.	$z \sim N(0, \mathbf{\Sigma})$
Data	$(\Phi(x_i))_{i\in[n]}$ iid, $y_i=\langle\Phi(x_i),oldsymbol{ heta}_* angle+arepsilon_i$	$(z_i)_{i\in[n]}$ iid, $y_i=\langle z_i, oldsymbol{ heta}_* angle+arepsilon_i$
Feature mat.	$\mathbf{\Phi} = [\phi(x_1), \dots, \phi(x_n)]^T \in \mathbb{R}^{n \times \infty}$	$Z = [z_1, \ldots, z_n]^{T} \in \mathbb{R}^{n \times \infty}$
Kernel fct	$K(x_i, x_j) = \langle \Phi(x_1), \Phi(x_2) \rangle_{\ell_2}$	$K(z_i,z_j)=\langle z_1,z_2\rangle_{\ell_2}$
Solution	$\hat{f}_{\lambda} = \langle \Phi(\mathbf{x}), \hat{m{ heta}}_{\lambda} angle_{\ell_2}$	$\hat{f}_{\lambda}(z) = \langle z, \hat{oldsymbol{ heta}}_{\lambda}^G angle_{\ell_2}$
	$\hat{ heta}_{\lambda} = \mathbf{\Phi}^{T} (\mathbf{\Phi} \mathbf{\Phi}^{T} + \lambda)^{-1} y$	$\hat{ heta}_{\lambda}^{G} = \mathbf{Z}^{T} (\mathbf{Z}\mathbf{Z}^{T} + \lambda)^{-1} \mathbf{y}$
Test error	$R(f_*,\hat{f}_{\lambda}) = \ \mathbf{\Sigma}^{1/2}(oldsymbol{ heta}_* - \hat{oldsymbol{ heta}}_{\lambda})\ _{\ell_2}^2$	$R_G(f_*, \hat{f}_\lambda) = \ \mathbf{\Sigma}^{1/2}(\boldsymbol{\theta}_* - \hat{\boldsymbol{\theta}}_\lambda^G)\ _{\ell_2}^2$

Universality: $R(f_*, \hat{f}_{\lambda}) - R_G(f_*, \hat{f}_{\lambda}) \stackrel{\mathbb{P}}{\to} 0$ (already conjectured previously).

Gaussian equivalent model and universality of feature maps (1)

Ridge regression with features $\phi(x_i)$: function of random matrix resolvent.

For some "high dimensional" feature map, expect universality to happen: can replace $\phi(\mathbf{x})$ by Gaussian vector \mathbf{z} with matching first two moments.

Covariance matrix: $\mathbf{\Sigma} = \mathbb{E}_{\mathbf{x}}[\Phi(\mathbf{x})\Phi(\mathbf{x})^{\mathsf{T}}] = \mathrm{diag}((\lambda_j)_{j\geq 1}).$

Model	KRR:	Gaussian covariates model:		
Distribution	$\Phi(\mathbf{x}) = (\sqrt{\lambda_j}\phi_j(\mathbf{x}))_{j\geq 1} \text{ with } \mathbf{x} \sim \nu.$	$z \sim N(0,\mathbf{\Sigma})$		
Data	$(\Phi(x_i))_{i\in[n]}$ iid, $y_i=\langle\Phi(x_i),oldsymbol{ heta}_* angle+arepsilon_i$	$(z_i)_{i\in[n]}$ iid, $y_i=\langle z_i,oldsymbol{ heta}_* angle+arepsilon_i$		
Feature mat.	$\mathbf{\Phi} = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)]^{T} \in \mathbb{R}^{n \times \infty}$	$Z = [z_1, \ldots, z_n]^{T} \in \mathbb{R}^{n \times \infty}$		
Kernel fct	$K(x_i, x_j) = \langle \Phi(x_1), \Phi(x_2) \rangle_{\ell_2}$	$K(z_i,z_j)=\langle z_1,z_2\rangle_{\ell_2}$		
Solution	$\hat{f}_{\lambda} = \langle \Phi(\mathbf{x}), \hat{m{ heta}}_{\lambda} angle_{\ell_{2}}$	$\hat{f}_{\lambda}(oldsymbol{z}) = \langle oldsymbol{z}, \hat{oldsymbol{ heta}}_{\lambda}^G angle_{\ell_{oldsymbol{2}}}$		
	$\hat{oldsymbol{ heta}}_{\lambda} = oldsymbol{\Phi}^{T} (oldsymbol{\Phi} oldsymbol{\Phi}^{T} + \lambda)^{-1} oldsymbol{y}$	$\hat{oldsymbol{ heta}}_{\lambda}^{G} = oldsymbol{Z}^{T} (oldsymbol{Z} oldsymbol{Z}^{T} + \lambda)^{-1} oldsymbol{y}$		
Test error	$R(f_*,\hat{f}_\lambda) = \ \mathbf{\Sigma}^{1/2}(oldsymbol{ heta}_* - \hat{oldsymbol{ heta}}_\lambda)\ _{\ell_2}^2$	$R_G(f_*,\hat{f}_\lambda) = \ \mathbf{\Sigma}^{1/2}(\boldsymbol{\theta}_* - \hat{\boldsymbol{\theta}}_\lambda^G)\ _{\ell_2}^2$		

Universality: $R(f_*, \hat{f}_{\lambda}) - R_G(f_*, \hat{f}_{\lambda}) \stackrel{\mathbb{P}}{\to} 0$ (already conjectured previously).

Gaussian equivalent model and universality of feature maps (2)

[Hu, Lu, '20], [Montanari, Saeed, '22], [Gerace, Loureiro, Krzakala, Mezard, Zdeborova, '20] when $n \approx d$ and or universality of covariates.

Here universality of the entire feature map and polynomial scaling $\log(n) \approx \log(d)$.

Such an equivalence is not obvious: coordinates of $\Phi(x)$ are not subgaussian or weakly dependent. Here will present some cases, where it can be shown rigorously.

Test error in the Gaussian covariates model

Test error:
$$R_G(f_*, \hat{f}_{\lambda}) = \|\mathbf{\Sigma}^{1/2}(\theta_* - \hat{\boldsymbol{\theta}}_{\lambda}^G)\|_{\ell_2}^2$$
.

$$\mathsf{Bias} = \|\mathbf{\Sigma}^{1/2}\theta_* - \mathbf{\Sigma}^{1/2}\mathbf{Z}^\mathsf{T}(\mathbf{Z}\mathbf{Z}^\mathsf{T} + \lambda)^{-1}\mathbf{Z}\theta_*\|_{\ell_2}^2 \,,$$

$$\mathsf{Variance} = \sigma_\varepsilon^2 \mathrm{Tr}\big[(\mathbf{Z}\mathbf{Z}^\mathsf{T} + \lambda)^{-2}\mathbf{Z}\mathbf{\Sigma}\mathbf{Z}^\mathsf{T}\big] \,.$$

Different than previous Gaussian design work ($n \approx p$, eigenvalues of same order).

Here for simplicity, we assume: $\exists \delta > 0$ and a sequence m(n) such that $m \leq n^{1-\delta}$ and

$$\lambda_{m+1} \cdot n^{1+\delta} \le \sum_{i=m+1}^{\infty} \lambda_j.$$

(a 'spectral gap', which will happen for models with a lot of symmetries.)

Key quantity: the kernel matrix

Random kernel matrix: $K = (\langle z_i, z_j \rangle)_{ij \in [n]} \in \mathbb{R}^{n \times n}$.

$$\mathbf{K} = \sum_{j=1}^{\infty} \lambda_j \mathbf{u}_j \mathbf{u}_j^{\mathsf{T}} = \mathbf{K}_{\leq m} + \mathbf{K}_{>m}, \quad \mathbf{u}_j = (\mathbf{z}_{ij})_{i \in [n]}.$$

Main intuition:

▶ **High-frequency part:** $K_{>m} = Z_{>m} Z_{>m}^T$ with $Z_{>m}$ iid Gaussian rows. Denote $\lambda_{>m} = \sum_{i>m} \lambda_i$. Then w.h.p.,

$$\|\boldsymbol{Z}_{>m}\boldsymbol{Z}_{>m}^{\mathsf{T}} - \lambda_{>m}\boldsymbol{I}\|_{\mathrm{op}} \lesssim \lambda_{m+1} + \lambda_{>m}/n \lesssim n^{-1} \cdot \lambda_{>m}.$$

▶ Low-frequency part: $K_{\leq m} = Z_{\leq m} Z_{\leq m}^{\mathsf{T}} = G_m \Sigma_m G_m^{\mathsf{T}}$ where $G_m = Z_{\leq m} \Sigma_m^{-1/2}$, $G_m \in \mathbb{R}^{n \times m}$ iid $\mathsf{N}(0,1)$ with $m \ll n$. Then G_m almost orthogonal:

$$\|\boldsymbol{G}_{m}^{\mathsf{T}}\boldsymbol{G}_{m}/n - \boldsymbol{I}_{m}\|_{\mathrm{op}} \lesssim \frac{m}{n} = n^{-\delta}$$
.

The kernel matrix: $\lambda_{\text{eff}} = \lambda_{>m} + \lambda$,

$$\mathbf{K} + \lambda \mathbf{I} = \mathbf{G}_{m} \mathbf{\Sigma}_{m} \mathbf{G}_{m}^{\mathsf{T}} + \lambda_{\mathsf{eff}} \mathbf{I}_{n}$$

Asymptotics formula

Asymptotics:

$$\begin{split} \mathsf{Bias} &= \left\|\boldsymbol{\beta}_m - \left(\boldsymbol{\Sigma}_m + \left(\lambda_{\mathsf{eff}}/n\right)\boldsymbol{I}_m\right)^{-1}\boldsymbol{\Sigma}_m\boldsymbol{\beta}_m\right\|_2^2 + \left\|\boldsymbol{\beta}_{>m}\right\|_{\ell_2}^2 + o_{d,\mathbb{P}}(1)\,,\\ \mathsf{Variance} &= o_{d,\mathbb{P}}(1)\,. \end{split}$$

Test error:

$$R_{G}(f_{*},\hat{f}_{\lambda}) = \|\boldsymbol{\beta} - (\boldsymbol{\Sigma} + (\lambda_{\mathsf{eff}}/n)\boldsymbol{I})^{-1}\boldsymbol{\Sigma}\boldsymbol{\beta}\|_{\ell_{2}}^{2} + o_{d,\mathbb{P}}(1).$$

For KRR:

$$R(f_*, \hat{f}_{\lambda}) = ||f_* - \mathbb{S}_{\lambda} f_*||_{L^2}^2 + o_{d, \mathbb{P}}(1),$$

with shrinkage operator:

$$\hat{f}_{\lambda}(\mathbf{x}) pprox \mathbb{S}_{\lambda} f_{*}(\mathbf{x}) = \sum_{j \geq 1} \frac{\lambda_{j}}{\lambda_{j} + \lambda_{\mathsf{eff}}/n} \langle f_{*}, \phi_{j} \rangle_{L^{2}} \phi_{j}(\mathbf{x}) \,.$$

KRR acts as a shrinkage operator

With spectral gap, KRR with finite data:

$$\hat{f}_{\lambda} = \arg\min_{f} \left\{ \frac{1}{n} \sum_{i \in [n]} (y_i - f(\mathbf{x}_i))^2 + \frac{\lambda}{n} ||f||_{\mathcal{H}}^2 \right\},\,$$

replaced by effective problem with $n = \infty$ and $\lambda_{\text{eff}} = \lambda_{>m} + \lambda$:

$$\hat{f}^{\mathsf{eff}}_{\lambda} = \arg\min_{f} \left\{ \mathbb{E}[\left(f_*(\mathbf{x}) - f(\mathbf{x})\right)^2] + \frac{\lambda_{\mathsf{eff}}}{n} \|f\|_{\mathcal{H}}^2 \right\}.$$

Components: $\lambda_j \gg \lambda_{\rm eff}/n$ perfectly fitted, $\lambda_j \ll \lambda_{\rm eff}/n$ not fitted at all.

Phenomenology

- 1) $\lambda_{>m}$ self-induced regularization from high-degree part of kernel
- 2) Interpolator $\lambda = 0$ are optimal
- 3) KRR learns $P_{\leq m}f_*$ (smooth part) and doesn't learn at all $P_{>m}f_*$ (and $P_{>m}\hat{f}_{\lambda}$ spiky part for interpolation).

KRR acts as a shrinkage operator

With spectral gap, KRR with finite data:

$$\hat{f}_{\lambda} = \arg\min_{f} \left\{ \frac{1}{n} \sum_{i \in [n]} (y_i - f(\mathbf{x}_i))^2 + \frac{\lambda}{n} ||f||_{\mathcal{H}}^2 \right\},\,$$

replaced by effective problem with $n = \infty$ and $\lambda_{\text{eff}} = \lambda_{>m} + \lambda$:

$$\hat{f}_{\lambda}^{\mathsf{eff}} = \arg\min_{f} \left\{ \mathbb{E}[(f_*(\mathbf{x}) - f(\mathbf{x}))^2] + \frac{\lambda_{\mathsf{eff}}}{n} \|f\|_{\mathcal{H}}^2 \right\}.$$

Components: $\lambda_j \gg \lambda_{\rm eff}/n$ perfectly fitted, $\lambda_j \ll \lambda_{\rm eff}/n$ not fitted at all.

Phenomenology:

- 1) $\lambda_{>m}$ self-induced regularization from high-degree part of kernel,
- 2) Interpolator $\lambda = 0$ are optimal,
- 3) KRR learns $P_{\leq m}f_*$ (smooth part) and doesn't learn at all $P_{>m}f_*$ (and $P_{>m}\hat{f}_\lambda$ spiky part for interpolation).

Proving universality

What properties on $\phi(x)$ allow you to show universality with Gaussian model?

[Mei, M., Montanari, '21]: hypercontractivity of the top eigenfunctions.

Assumptions on $(\phi^{(n)})_{n\geq 1}$:

▶ Spectral gap: exists $m(n)_{n>1}$ and $\delta > 0$ such that $m \leq n^{1-\delta}$ and

$$\lambda_{m+1} \cdot n^{1+\delta} \le \sum_{j>m} \lambda_j.$$

Hypercontractivity: for any $q \ge 1$, there exists C_q such that

$$||h||_{L^{2q}} \le C_q ||h||_{L^2}, \quad \forall h \in \text{span}(\psi_s^{(n)} : 1 \le s \le m).$$

E.g., low-degree polynomials for x Gaussian vector/uniform on hypercube/uniform on hypersphere.

Other abstract assumptions that show universality. However, difficult to check these assumptions in practice.

One example: inner-product kernel on the sphere

▶ $x_1, x_2 \sim \mathsf{Unif}(\mathbb{S}^{d-1}(\sqrt{d}))$ and $h: [-1, +1] \to \mathbb{R}$ PD, non-polynomial. Eigendecomposition of the kernel:

$$K(x_1,x_2) = h(\langle x_1,x_2\rangle/d) = \sum_{k=0}^{\infty} \xi_k \sum_{s \in [B(d,k)]} Y_{ks}(x_1) Y_{ks}(x_2),$$

where Y_{ks} degree-k spherical harmonics and $\xi_k = \Theta_d(B(d,k)^{-1}) = \Theta_d(d^{-k})$.

 $lackbox{ For } d^{\ell+\delta} \leq n \leq d^{\ell+1-\delta}$, can take $m = \sum_{k \leq \ell} \mathcal{B}(d,k) = \Theta(d^\ell)$:

$$n \cdot \lambda_{m+1} = n \cdot \xi_{\ell+1} \ge d^{\delta}, \qquad \sum_{j>m} \lambda_j = \sum_{k>\ell} \xi_k B(d,k) = \Theta_d(1).$$

▶ For $j \leq m$, $\lambda_j \gg \lambda^{\text{eff}}/n$ are perfectly learned, $\lambda_j \ll \lambda^{\text{eff}}/n$ are not learned at all, i.e.,

$$\hat{f}_{\lambda}(\mathbf{x}) = \mathsf{P}_{<\ell} f_*(\mathbf{x}) + o_{d,\mathbb{P}}(1)$$
.

What about $n \simeq d^{\ell}$?

No spectral gap when $n \asymp d^{\ell}$:

$$\mathbf{K} pprox \mathbf{K}_{\leq \ell-1} + \mu_{\ell} rac{\mathbf{Y}_{\ell} \mathbf{Y}_{\ell}^{\mathsf{T}}}{B(\mathbf{d}, \ell)} + \mathbf{m} \mathbf{u}_{>\ell} \mathbf{I}_{\mathit{n}} \,.$$

- $ightharpoonup K_{<\ell-1}$: low-rank spike matrix.
- ► $K_{>\ell} \approx \mu_{>\ell} I_n$: self-induced reg from high-degree part.
- ▶ $\mathbf{Y}_{\ell} = (Y_{\ell s}(\mathbf{x}_i))_{i \in [n], s \in [B(d,\ell)]} \in \mathbb{R}^{n \times B(d,\ell)}$, iid rows. Covariance matrix. Spectrum converges to a Marchenko-Pastur law.

(Generalization of [El Karoui, '10] to the polynomial scaling.)

Fits completely degree- $(\ell-1)$ polynomial approximation, none of the degree $>\ell$ components, and partially degree- ℓ components.

Test error for $n \approx d^{\ell}$

Test error = $\|\mathsf{P}_{>\ell}f_*\|_{L^2}^2$ + the test error of ridge regression model with $x_i \sim \mathsf{N}(0, I_B)$ and $y_i = \langle x, \beta \rangle + \varepsilon_i$ with $\|\beta\|_2 = \|\mathsf{P}_\ell f_*\|_{L^2}$ and noise $\mathbb{E}[\varepsilon_i^2] = \|\mathsf{P}_{>\ell}f_*\|_{L^2}^2 + \sigma_\varepsilon^2$ and regularization $\xi_\ell = (\mu_{>\ell} + \lambda)/\mu_\ell$:

$$\min_{\boldsymbol{\beta}} \left\{ \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_{2}^{2} + \xi_{\ell} \|\boldsymbol{\beta}\|_{2}^{2} \right\}.$$

As $n/B(d,\ell) \rightarrow \psi$:

$$R(f_*;\hat{f}_{\lambda}) = \|\mathsf{P}_{\ell}f_*\|_{\mathsf{L}^2}^2 \cdot \mathcal{B}(\psi,\zeta_{\ell}) + (\|\mathsf{P}_{>\ell}f_*\|_{\mathsf{L}^2}^2 + \sigma_{\varepsilon}^2) \cdot \mathcal{V}(\psi,\zeta_{\ell}) + \|\mathsf{P}_{>\ell}f_*\|_{\mathsf{L}^2}^2 + o_{d,\mathbb{P}}(1).$$

Asymptotics of KRR on the sphere in polynomial scaling

$$x \sim \text{Unif}(\mathbb{S}^{d-1}(\sqrt{d})), K(x; z) = h(\langle x, z \rangle / d).$$

Asymptotics in polynomial scaling $n/d^{\kappa} \to \psi$ for any $\kappa, \psi > 0$:

Random features ridge regression

$$K(\mathbf{x}_1, \mathbf{x}_2) = \mathbb{E}_{\mathbf{w} \sim \nu}[\sigma(\mathbf{x}_1; \mathbf{w})\sigma(\mathbf{x}_2; \mathbf{w})] \text{ with } \sigma \in L^2(\mathcal{X} \times \mathcal{V}).$$

Random feature approx: sample $(w_s) \sim_{iid} \nu$ and replace K by

$$K_N(\mathbf{x}_1,\mathbf{x}_2) = \frac{1}{N} \sum_{s \in [N]} \sigma(\mathbf{x}_1; \mathbf{w}_s) \sigma(\mathbf{x}_2; \mathbf{w}_s).$$

Random Features Ridge Regression (RFRR): fit a model $\hat{f}_{N,\lambda}(x) = \frac{1}{N} \sum_{s \in [N]} \hat{a}_s \sigma(x; w_s)$ with

$$\hat{\boldsymbol{a}} = \arg\min_{\boldsymbol{a} \in \mathbb{R}^N} \left\{ \sum_{i \in [n]} (y_i - f_N(\boldsymbol{x}_i; \boldsymbol{a}))^2 + \frac{\lambda}{N} \|\boldsymbol{a}\|_2^2 \right\}.$$

When $N \to \infty$, $\hat{f}_{N,\lambda} \to \hat{f}_{\lambda}$.

Universality and Gaussian equivalence model

Again, σ can be seen as a compact operator and is diagonalizable:

$$\sigma(\mathbf{x}; \mathbf{w}) = \sum_{j \geq 1} \sqrt{\lambda_j} \phi_j(\mathbf{x}) \psi_j(\mathbf{x}) = \langle \Phi(\mathbf{x}), \Psi(\mathbf{w}) \rangle_{\ell_2},$$

$$\Phi(x) = (\lambda_j^{1/4} \phi_j(x))_{j \ge 1}, \qquad \Psi(x) = (\lambda_j^{1/4} \psi_j(x))_{j \ge 1},$$

with $\{\phi_j\}$ orthonormal basis of $L^2(\mathcal{X})$ and $\{\psi_j\}$ orthonormal basis of $L^2(\mathcal{V})$.

Gaussian equivalent model: $\Phi(\mathbf{x}_i) \leftrightarrow \mathbf{z}_i$, $\Psi(\mathbf{w}_j) \leftrightarrow \mathbf{g}_j$ and $\sigma(\mathbf{x}_i; \mathbf{w}_j) \leftrightarrow \langle \mathbf{z}_i, \mathbf{g}_j \rangle_{\ell_2}$.

$$\textbf{\textit{F}} = (\sigma(\textbf{\textit{x}}_i; \textbf{\textit{w}}_j))_{i \in [n], j \in [N]}, \ \textbf{\textit{Z}} = [\textbf{\textit{z}}_1, \dots, \textbf{\textit{z}}_n]^\mathsf{T} \in \mathbb{R}^{n \times \infty}, \ \textbf{\textit{G}} = [\textbf{\textit{g}}_1, \dots, \textbf{\textit{g}}_n]^\mathsf{T} \in \mathbb{R}^{N \times \infty}.$$

$$\hat{f}_{N,\lambda}^{G}(z) = z^{\mathsf{T}} G^{\mathsf{T}} G Z^{\mathsf{T}} (Z G^{\mathsf{T}} G Z + \lambda I/N)^{-1} y/N$$
.

Asymptotics of RFRR on the sphere in polynomial scaling

$$\mathbf{x} \sim \mathsf{Unif}(\mathbb{S}^{d-1}(\sqrt{d})), \ \mathbf{w} \sim \mathsf{Unif}(\mathbb{S}^{d-1}(\sqrt{d})), \ \hat{f}_{RF}(\mathbf{x}; \mathbf{a}) = \sum_{i \in [N]} a_i \sigma(\langle \mathbf{x}, \mathbf{w}_i \rangle).$$

Asymptotics in polynomial scaling $n/d^{\kappa_1} \to \psi_1$, $N/d^{\kappa_2} \to \psi_2$ for any $\kappa_1, \kappa_2, \psi_1, \psi_2 > 0$:

Test error $\approx \max(\text{approximation error}, \text{statistical error})$.

Application I: learning with group-invariance (1)

- ▶ Data invariant by group action \mathcal{G}_d (subgroup of $\mathcal{O}(d)$): i.e., $f_*(g \cdot x) = f_*(x)$ for all $g \in \mathcal{G}_d, x \in \mathbb{S}^{d-1}(\sqrt{d})$.
- ► Comparison between learning with:
 - standard kernel $K(x_1, x_2) = h(\langle x_1, x_2 \rangle / d)$;
 - \mathcal{G}_d -invariant kernel $K(x_1,x_2)=\int_{\mathcal{G}_d}h(\langle x_1,g\cdot x_2\rangle/d)\pi_d(\mathrm{d}g).$
- ▶ Group \mathcal{G}_d of degeneracy α : if for any $k \geq \alpha$,

$$rac{\mathsf{dim}(V_{d,k})}{\mathsf{dim}(V_{d,k}(\mathcal{G}_d))} symp d^{lpha}\,,$$

 $V_{d,k}$: space of degree-k polynomials; $V_{d,k}(\mathcal{G}_d)$: degree-k \mathcal{G}_d -invariant polynomials. Cyclic group: $\alpha=1$ $(g_r \cdot \mathbf{x}=(x_{1+r},x_{2+r},\ldots,x_d,x_1,\ldots,x_r))$.

► To learn a degree- ℓ polynomial approximation needs $d^{\ell-\alpha}$ samples. (Gain of a factor d^{α} in sample size and number of random features.)

Application I: learning with group-invariance (2)

Cyclic invariant MNIST:

Figure: Test accuracy against number of samples (orange: cyclic kernel, blue: standard kernel).

Application II: learning with convolutional kernels

Covariates $\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d$, patches of size \mathbf{q} : $\mathbf{x}_{(k)} = (x_k, \dots, x_{k+q-1})$.

NTK of 1-layer convolutional kernel followed by local average pooling:

$$H_{q,\omega}(\mathbf{x},\mathbf{z}) = \frac{1}{d\omega} \sum_{k \in [d]} \sum_{s,s' \in [\omega]} h(\langle \mathbf{x}_{k+s}, \mathbf{z}_{k+s'} \rangle / q).$$

For $x \sim \text{Unif}(\{+1,-1\}^d)$, $H_{q,\omega}$ can be diagonalized and we can compute sharp asymptotics for the test error.

E.g., target function: $f_*(x) = \frac{1}{d} \sum_{k \in [d]} P_\ell(x_{(k)})$.

To fit f_*	H ^{FC}	H_{GP}^{FC}	H ^{CK}	H^{CK}_{ω}	H_{GP}^{CK}
Sample complexity	d^ℓ	$d^{\ell-1}$	$dq^{\ell-1}$	$dq^{\ell-1}/\omega$	$q^{\ell-1}$

$$\begin{array}{ll} \textit{H}^{\textit{FC}} \colon \textit{q} = \textit{d}, \omega = 1; & \textit{H}^{\textit{FC}}_{\textit{GP}} \colon \textit{q} = \textit{d}, \omega = \textit{d}; \\ \textit{H}^{\textit{CK}} \colon \textit{q}, \omega = 1; & \textit{H}^{\textit{CK}}_{\omega} \colon \textit{q}, \omega; & \textit{H}^{\textit{CK}}_{\textit{GP}} \colon \textit{q}, \omega = \textit{d}. \end{array}$$

Application III: learning with anisotropic data (1)

Spiked covariates model: orthogonal matrix $[\boldsymbol{U}, \boldsymbol{U}^{\perp}]$

$$\mathbf{z} = \mathbf{U}\mathbf{z}_1 + \mathbf{U}^{\perp}\mathbf{z}_2, \qquad \mathbf{z}_1 \in \mathbb{R}^{d_s}, \mathbf{z}_2 \in \mathbb{R}^{d-d_s}.$$

Signal part: $\mathbf{z}_1 \sim \mathsf{Unif}\Big(\mathbb{S}^{d_s-1}\big(\sqrt{\mathsf{snr}_c \cdot d_s}\big)\Big).$

Noise part: $\mathbf{z}_2 \sim \mathsf{Unif}\left(\mathbb{S}^{d-d_s-1}(\sqrt{d-d_s})\right)$ $d_s = \mathsf{signal}$ dimension.

 $a_s = \text{signal differsion}$. $\text{snr}_c = \text{covariate SNR}$.

Target function: $f_*(x) = \varphi(z_1)$.

Define effective dimension: $d_{eff} = d_s \vee (d/snr_c)$

$$\text{for } d_{\mathrm{eff}}{}^{\ell+\delta} \leq n \leq d_{\mathrm{eff}}{}^{\ell+1-\delta}, \qquad R(f_*,\hat{f}) = \|\mathsf{P}_{>\ell}f_*\|_{L^2}^2 + o_{d,\mathbb{P}}(1)\,.$$

- Approx. isotropic data: $snr_c \approx 1$, $d_{eff} \approx d$.
- ▶ Very anisotropic data: $\operatorname{snr}_c \gg 1$, $d_{\operatorname{eff}} \approx d_s \ll d$. KRR much more efficient.

Application III: learning with anisotropic data (2)

For images: (1) Spectrum concentrates on low-frequencies;

(2) Labels depend predominantly on low-frequencies.

Figure: Test accuracy on FMNIST: adding noise to the high frequency components (decreasing snr_c , increasing $d_{eff} = d/snr_c$).

Summary

- ► Gaussian equivalent model for "high-dimensional enough models".
- ► Can give very precise results which give clear conceptual picture.
- ▶ More general type of universality: entire feature maps + polynomial scaling $log(n) \ltimes log(d)$.
- Limitations: hard to apply it to specific setting (most of the time, no explicit diagonalization).
- ▶ More general directions (ERM universality).

Thank you!

- 1. Linearized two-layers neural networks in high dimension. Ghorbani, Mei, \mathbf{M} ., Montanari (2019).
- 2. When do neural networks outperform kernel methods? Ghorbani, Mei, M., Montanari (2020).
- 3. Generalization error of random feature and kernel methods: Hypercontractivity and kernel matrix concentration. Mei, M., Montanari (2021).
- 4. Learning with invariances in random features and kernel models. Mei, M., Montanari (2021).
- 5. Learning with convolution and pooling operations in kernel methods. M., Mei (2021).
- 6. Spectrum of inner-product kernel matrices in the polynomial scaling and multiple descent phenomenon in kernel ridge regression. M. (2022).
- + some ongoing work.