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Modern machine learning

I New regime for statistics: overparametrized models, no explicit regularization and
capacity control, train until (near-)interpolation even with noisy data.

New phenomenology: benign overfitting, double descent, non-monotonic error
curves...

I Phenomena already present in linear models [Belkin,Ma,Mandal,’18].

I This talk: kernel ridge regression (KRR) in the high dimension regime.

Goal of this tutorial is to show:
1. How to derive quickly asymptotics for kernel/random features ridge regression.

2. How the above phenomena have very precise explanations in this regime.
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Benign overfitting, self-induced regularization and double descent

I Benign overfitting: interpolator generalizes well.
Idea: f̂ = f0 + ∆ with f0 smooth solution +
spike part with ‖∆‖L2 � 1.

In linear models: self-induced regularization.
Non-smooth part of the kernel plays the role of
an effective ridge regularization.

(This is HD phenomena.)

I Double descent and non-monotonic curves.

1

Test Error
Bias
Variance

Need exact test error that holds for a given function and is exact up to an additive
vanishing constant.
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Some references

A subset of references:

I Benign overfitting: [Liang,Rakhlin,’18], [Ghorbani,Mei,M,Montanari,’19],
[Bartlett,Long,Lugosi,Tsigler,’20].

I Double descent: [Mei,Montanari,’19], [Hastie,Montanari,Rosset,Tibshirani,’20],
[Gerace,Loureiro,Krzakala,Mezard,Zdeborova,’20].

I Linear models: [Tsigler,Bartlett,’20], [Cui,Loureiro,Krzakala,Zdeborova,’21],
[Liao,Couillet,Mahoney,’20], [Richards,Mourtada,Rosasco,’21], [Wu,Xu,’20].

I KRR: [Jacot,Simsek,Spadaro,Hongler,Gabriel,’20], [Canatar,Bordelon,Pehlevan,’21],
[Mei,M,Montanari,’21], [Bartlett,Montanari,Rakhlin,’21], [Liu,Liao,Suykens,’21],
[Liang,Rakhlin,Zhai,’21], [Hu,Lu,’22].
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Quick background on KRR (1)

Covariates: x ∈ (X , ν).
Kernel function: K : X × X → R PSD, associated kernel operator: K : L2(X )→ L2(X ):

Kf (x) =

∫
X
K(x , x ′)f (x ′)ν(dx ′) .

Diagonalization: {φj}j≥1 orthonormal basis of L2(X ) and {λj}j≥0 nonincreasing (λj > 0)

K =
∑
j≥1

λjφjφ
∗
j , K(x1, x2) =

∑
j≥1

λjφj(x1)φj(x2) .

Feature map: x 7→ Φ(x) = (
√
λjφj(x))j≥1 so that K(x1, x2) = 〈Φ(x1),Φ(x2)〉`2

L2 space: for any f∗ ∈ L2(X ),

f∗(x) =
∑
j≥1

βjφj(x) = 〈θ∗,Φ(x)〉`2 , θ∗ = (θj)j≥1, θj = βj/
√
λj .

Associated RKHS: H = {f ∈ L2(X ) : ‖f ‖H <∞},

‖f ‖2H = ‖K−1/2f ‖2L2 =
∑
j≥1

β2j
λj

= ‖θ∗‖2`2 .
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Quick background on KRR (2)

Data: {(yi , x i )}i∈[n] where x i ∼iid (X , ν) and yi = f?(x i ) + εi , with f∗ ∈ L2(X ) and
independent noise εi , E[εi ] = 0, E[ε2i ] = σ2ε .

Kernel ridge regression: fit the data with

f̂λ = arg min
f

{∑
i∈[n]

(yi − f (x i ))2 + λ‖f ‖2H
}
.

Equivalently: f̂λ = 〈θ̂λ,Φ(·)〉`2 where for Φ = [Φ(x1), . . . ,Φ(xn)]T ∈ Rn×∞,

θ̂λ = arg min
θ

{∑
i∈[n]

(yi − 〈Φ(x i ),θ〉)2 + λ‖θ‖2`2
}

= ΦT(ΦΦT + λ)−1y .

[Representer thm: f̂λ(x) =
∑

i âiK(x , x i ) with â = (K + λ)−1y , K = (K(x i , x j))ij∈[n].]

Goal: compute the test error R(f∗, f̂λ) = Ex [(f∗(x)− f̂λ(x))2] in the high dimensional
regime x ∈ Rd and log(n) � log(d).

T. Misiakiewicz Kernels in high-dimension May 26th, 2022 6 / 27



Quick background on KRR (2)

Data: {(yi , x i )}i∈[n] where x i ∼iid (X , ν) and yi = f?(x i ) + εi , with f∗ ∈ L2(X ) and
independent noise εi , E[εi ] = 0, E[ε2i ] = σ2ε .

Kernel ridge regression: fit the data with

f̂λ = arg min
f

{∑
i∈[n]

(yi − f (x i ))2 + λ‖f ‖2H
}
.

Equivalently: f̂λ = 〈θ̂λ,Φ(·)〉`2 where for Φ = [Φ(x1), . . . ,Φ(xn)]T ∈ Rn×∞,

θ̂λ = arg min
θ

{∑
i∈[n]

(yi − 〈Φ(x i ),θ〉)2 + λ‖θ‖2`2
}

= ΦT(ΦΦT + λ)−1y .

[Representer thm: f̂λ(x) =
∑
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Gaussian equivalent model and universality of feature maps (1)

Ridge regression with features φ(x i ): function of random matrix resolvent.

For some “high dimensional” feature map, expect universality to happen: can replace
φ(x) by Gaussian vector z with matching first two moments.

Covariance matrix: Σ = Ex [Φ(x)Φ(x)T] = diag((λj)j≥1).

Model KRR: Gaussian covariates model:
Distribution Φ(x) = (

√
λjφj(x))j≥1 with x ∼ ν. z ∼ N(0,Σ)

Data (Φ(x i ))i∈[n] iid, yi = 〈Φ(x i ),θ∗〉+ εi (z i )i∈[n] iid, yi = 〈z i ,θ∗〉+ εi

Feature mat. Φ = [φ(x1), . . . , φ(xn)]T ∈ Rn×∞ Z = [z1, . . . , zn]T ∈ Rn×∞

Kernel fct K(x i , x j) = 〈Φ(x1),Φ(x2)〉`2 K(z i , z j) = 〈z1, z2〉`2
Solution f̂λ = 〈Φ(x), θ̂λ〉`2 f̂λ(z) = 〈z , θ̂G

λ〉`2
θ̂λ = ΦT(ΦΦT + λ)−1y θ̂

G

λ = ZT(ZZT + λ)−1y

Test error R(f∗, f̂λ) = ‖Σ1/2(θ∗ − θ̂λ)‖2`2 RG (f∗, f̂λ) = ‖Σ1/2(θ∗ − θ̂
G

λ)‖2`2

Universality: R(f∗, f̂λ)− RG (f∗, f̂λ)
P→ 0 (already conjectured previously).
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Gaussian equivalent model and universality of feature maps (2)

[Hu, Lu,’20], [Montanari, Saeed,’22],[Gerace,Loureiro,Krzakala,Mezard,Zdeborova,’20] when
n � d and or universality of covariates.

Here universality of the entire feature map and polynomial scaling log(n) � log(d).

Such an equivalence is not obvious: coordinates of Φ(x) are not subgaussian or weakly
dependent. Here will present some cases, where it can be shown rigorously.
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Test error in the Gaussian covariates model

Test error: RG (f∗, f̂λ) = ‖Σ1/2(θ∗ − θ̂
G

λ)‖2`2 .

Bias = ‖Σ1/2θ∗ −Σ1/2ZT(ZZT + λ)−1Zθ∗‖2`2 ,

Variance = σ2εTr
[
(ZZT + λ)−2ZΣZT] .

Different than previous Gaussian design work (n � p, eigenvalues of same order).

Here for simplicity, we assume: ∃δ > 0 and a sequence m(n) such that m ≤ n1−δ and

λm+1 · n1+δ ≤
∞∑

j=m+1

λj .

(a ‘spectral gap’, which will happen for models with a lot of symmetries.)
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Key quantity: the kernel matrix

Random kernel matrix: K = (〈z i , z j〉)ij∈[n] ∈ Rn×n.

K =
∞∑
j=1

λju juT
j = K≤m + K>m , u j = (zij)i∈[n] .

Main intuition:
I High-frequency part: K>m = Z>mZT

>m with Z>m iid Gaussian rows. Denote
λ>m =

∑
j>m λj . Then w.h.p.,

‖Z>mZT
>m − λ>mI‖op . λm+1 + λ>m/n . n−1 · λ>m .

I Low-frequency part: K≤m = Z≤mZT
≤m = GmΣmGT

m where Gm = Z≤mΣ
−1/2
m ,

Gm ∈ Rn×m iid N(0, 1) with m� n. Then Gm almost orthogonal:

‖GT
mGm/n − Im‖op .

m

n
= n−δ .

The kernel matrix: λeff = λ>m + λ,

K + λI = GmΣmGT
m + λeff I n .
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Asymptotics formula

Asymptotics:

Bias = ‖βm − (Σm + (λeff/n)Im)−1Σmβm‖
2
2 + ‖β>m‖

2
`2 + od,P(1) ,

Variance = od,P(1) .

Test error:
RG (f∗, f̂λ) = ‖β − (Σ + (λeff/n)I )−1Σβ‖2`2 + od,P(1) .

For KRR:
R(f∗, f̂λ) = ‖f∗ − Sλf∗‖2L2 + od,P(1) ,

with shrinkage operator:

f̂λ(x) ≈ Sλf∗(x) =
∑
j≥1

λj

λj + λeff/n
〈f∗, φj〉L2φj(x) .
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KRR acts as a shrinkage operator

With spectral gap, KRR with finite data :

f̂λ = arg min
f

{1
n

∑
i∈[n]

(yi − f (x i ))2 +
λ

n
‖f ‖2H

}
,

replaced by effective problem with n =∞ and λeff = λ>m + λ:

f̂ effλ = arg min
f

{
E[(f∗(x)− f (x))2] +

λeff
n
‖f ‖2H

}
.

Components: λj � λeff/n perfectly fitted, λj � λeff/n not fitted at all.

Phenomenology:
1) λ>m self-induced regularization from high-degree part of kernel,
2) Interpolator λ = 0 are optimal,
3) KRR learns P≤mf∗ (smooth part) and doesn’t learn at all P>mf∗ (and P>m f̂λ spiky
part for interpolation).
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Proving universality

What properties on φ(x) allow you to show universality with Gaussian model?

[Mei,M.,Montanari,’21]: hypercontractivity of the top eigenfunctions.

Assumptions on (φ(n))n≥1:
I Spectral gap: exists m(n)n≥1 and δ > 0 such that m ≤ n1−δ and

λm+1 · n1+δ ≤
∑
j>m

λj .

I Hypercontractivity: for any q ≥ 1, there exists Cq such that

‖h‖L2q ≤ Cq‖h‖L2 , ∀h ∈ span(ψ(n)
s : 1 ≤ s ≤ m} .

E.g., low-degree polynomials for x Gaussian vector/uniform on hypercube/uniform on
hypersphere.

Other abstract assumptions that show universality. However, difficult to check these
assumptions in practice.
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One example: inner-product kernel on the sphere

I x1, x2 ∼ Unif(Sd−1(
√
d)) and h : [−1,+1]→ R PD, non-polynomial.

Eigendecomposition of the kernel:

K(x1, x2) = h(〈x1, x2〉/d) =
∞∑
k=0

ξk
∑

s∈[B(d,k)]

Yks(x1)Yks(x2) ,

where Yks degree-k spherical harmonics and ξk = Θd(B(d , k)−1) = Θd(d−k).

I For d`+δ ≤ n ≤ d`+1−δ, can take m =
∑

k≤` B(d , k) = Θ(d`):

n · λm+1 = n · ξ`+1 ≥ dδ ,
∑
j>m

λj =
∑
k>`

ξkB(d , k) = Θd(1) .

I For j ≤ m, λj � λeff/n are perfectly learned, λj � λeff/n are not learned at all, i.e.,

f̂λ(x) = P≤`f∗(x) + od,P(1) .
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What about n � d`?

No spectral gap when n � d`:

K ≈ K≤`−1 + µ`
Y `Y T

`

B(d , `)
+ mu>`I n .

I K≤`−1: low-rank spike matrix.

I K>` ≈ µ>`I n: self-induced reg from high-degree part.

I Y ` = (Y`s(x i ))i∈[n],s∈[B(d,`)] ∈ Rn×B(d,`), iid rows. Covariance matrix. Spectrum
converges to a Marchenko-Pastur law.

(Generalization of [El Karoui,’10] to the polynomial scaling.)

Fits completely degree-(`− 1) polynomial approximation, none of the degree > `
components, and partially degree-` components.
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Test error for n � d`

Test error = ‖P>`f∗‖2L2 + the test error of ridge regression model with x i ∼ N(0, IB) and
yi = 〈x ,β〉+ εi with ‖β‖2 = ‖P`f∗‖L2 and noise E[ε2i ] = ‖P>`f∗‖2L2 + σ2ε and
regularization ξ` = (µ>` + λ)/µ`:

min
β

{
‖y − Xβ‖22 + ξ`‖β‖22

}
.

As n/B(d , `)→ ψ:

R(f∗; f̂λ) = ‖P`f∗‖2L2 · B(ψ, ζ`) + (‖P>`f∗‖2L2 + σ2ε) · V(ψ, ζ`) + ‖P>`f∗‖2L2 + od,P(1).
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Asymptotics of KRR on the sphere in polynomial scaling

x ∼ Unif(Sd−1(
√
d)), K(x ; z) = h(〈x , z〉/d).

Asymptotics in polynomial scaling n/dκ → ψ for any κ, ψ > 0:
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Random features ridge regression

K(x1, x2) = Ew∼ν [σ(x1; w)σ(x2; w)] with σ ∈ L2(X × V).

Random feature approx: sample (w s) ∼iid ν and replace K by

KN(x1, x2) =
1
N

∑
s∈[N]

σ(x1; w s)σ(x2; w s) .

Random Features Ridge Regression (RFRR): fit a model f̂N,λ(x) = 1
N

∑
s∈[N] âsσ(x ; w s)

with
â = arg min

a∈RN

{∑
i∈[n]

(yi − fN(x i ; a))2 +
λ

N
‖a‖22

}
.

When N →∞, f̂N,λ → f̂λ.
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Universality and Gaussian equivalence model

Again, σ can be seen as a compact operator and is diagonalizable:

σ(x ; w) =
∑
j≥1

√
λjφj(x)ψj(x) = 〈Φ(x),Ψ(w)〉`2 ,

Φ(x) = (λ
1/4
j φj(x))j≥1 , Ψ(x) = (λ

1/4
j ψj(x))j≥1 ,

with {φj} orthonormal basis of L2(X ) and {ψj} orthonormal basis of L2(V).

Gaussian equivalent model: Φ(x i )↔ z i , Ψ(w j)↔ g j and σ(x i ; w j)↔ 〈z i , g j〉`2 .

F = (σ(x i ; w j))i∈[n],j∈[N], Z = [z1, . . . , zn]T ∈ Rn×∞, G = [g1, . . . , g n]T ∈ RN×∞.

f̂ GN,λ(z) = zTGTGZT(ZGTGZ + λI/N)−1y/N .
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Asymptotics of RFRR on the sphere in polynomial scaling

x ∼ Unif(Sd−1(
√
d)), w ∼ Unif(Sd−1(

√
d)), f̂RF (x ; a) =

∑
i∈[N] aiσ(〈x ,w i 〉).

Asymptotics in polynomial scaling n/dκ1 → ψ1, N/dκ2 → ψ2 for any κ1, κ2, ψ1, ψ2 > 0:

Test error ≈ max(approzimation error, statistical error).
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Application I: learning with group-invariance (1)

I Data invariant by group action Gd (subgroup of O(d)):
i.e., f∗(g · x) = f∗(x) for all g ∈ Gd , x ∈ Sd−1(

√
d).

I Comparison between learning with:
- standard kernel K(x1, x2) = h(〈x1, x2〉/d);
- Gd -invariant kernel K(x1, x2) =

∫
Gd

h(〈x1, g · x2〉/d)πd(dg).

I Group Gd of degeneracy α: if for any k ≥ α,

dim(Vd,k)

dim(Vd,k(Gd))
� dα ,

Vd,k : space of degree-k polynomials; Vd,k(Gd) : degree-k Gd -invariant polynomials.
Cyclic group: α = 1 (gr · x = (x1+r , x2+r , . . . , xd , x1, . . . , xr )).

I To learn a degree-` polynomial approximation needs d`−α samples.

(Gain of a factor dα in sample size and number of random features.)

T. Misiakiewicz Kernels in high-dimension May 26th, 2022 21 / 27



Application I: learning with group-invariance (2)

Cyclic invariant MNIST:
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Figure: Test accuracy against number of samples (orange: cyclic kernel, blue: standard kernel).
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Application II: learning with convolutional kernels

Covariates x = (x1, . . . , xd) ∈ Rd , patches of size q: x (k) = (xk , . . . , xk+q−1).

NTK of 1-layer convolutional kernel followed by local average pooling:

Hq,ω(x , z) =
1
dω

∑
k∈[d ]

∑
s,s′∈[ω]

h(〈xk+s , zk+s′〉/q) .

For x ∼ Unif({+1,−1}d), Hq,ω can be diagonalized and we can compute sharp
asymptotics for the test error.

E.g., target function: f∗(x) = 1
d

∑
k∈[d ] P`(x (k)).

To fit f∗ HFC HFC
GP HCK HCK

ω HCK
GP

Sample complexity d` d`−1 dq`−1 dq`−1/ω q`−1

HFC : q = d , ω = 1; HFC
GP : q = d , ω = d ;

HCK : q, ω = 1; HCK
ω : q, ω; HCK

GP : q, ω = d .
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Application III: learning with anisotropic data (1)

Spiked covariates model: orthogonal matrix [U ,U⊥]

x = Uz1 + U⊥z2, z1 ∈ Rds , z2 ∈ Rd−ds .

Signal part: z1 ∼ Unif
(
Sds−1

(√
snrc · ds

))
.

Noise part: z2 ∼ Unif
(
Sd−ds−1

(√
d − ds

))
ds = signal dimension.
snrc = covariate SNR.

Target function: f?(x) = ϕ(z1).

Define effective dimension: deff = ds ∨ (d/snrc)

for deff
`+δ ≤ n ≤ deff

`+1−δ, R(f∗, f̂ ) = ‖P>`f∗‖2L2 + od,P(1) .

I Approx. isotropic data: snrc ≈ 1, deff ≈ d .

I Very anisotropic data: snrc � 1, deff ≈ ds � d . KRR much more efficient.
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Application III: learning with anisotropic data (2)

For images: (1) Spectrum concentrates on low-frequencies;
(2) Labels depend predominantly on low-frequencies.

Figure: Test accuracy on FMNIST: adding noise to the high frequency components (decreasing
snrc , increasing deff = d/snrc ).
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Summary

I Gaussian equivalent model for "high-dimensional enough models".

I Can give very precise results which give clear conceptual picture.

I More general type of universality: entire feature maps + polynomial scaling
log(n) � log(d).

I Limitations: hard to apply it to specific setting (most of the time, no explicit
diagonalization).

I More general directions (ERM universality).
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Thank you!

1. Linearized two-layers neural networks in high dimension. Ghorbani, Mei, M., Montanari
(2019).

2. When do neural networks outperform kernel methods? Ghorbani, Mei, M., Montanari (2020).

3. Generalization error of random feature and kernel methods: Hypercontractivity and kernel
matrix concentration. Mei, M., Montanari (2021).

4. Learning with invariances in random features and kernel models. Mei, M., Montanari (2021).

5. Learning with convolution and pooling operations in kernel methods. M., Mei (2021).

6. Spectrum of inner-product kernel matrices in the polynomial scaling and multiple descent
phenomenon in kernel ridge regression. M. (2022).

+ some ongoing work.
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