Limitations of Lazy Training of Two-layers Neural Networks
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Introduction

Consider the function class of two-layers neural networks
N
FNNN = {f(w) =Y aio({w;,x)): a; € R, w; € Rd}.
i=1

e Linearization around (random) parameter 8" = (a!, w")

fan(:; 0) ~ fan(ax; 0") + (0 — 6", Vg fun(x; 0"))
e Lazy training [1]: under certain initialization and for a large
number of parameters N, the parameters 0 learned by SGD

stay close to the initialization 8" and the above
approximation is accurate |2].

e [n this regime, learning the neural network is essentially the
same as learning the linearized part:

fan(zx; ) =0 + Z Aao({w), x))
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First layer linearization

We consider the following two function classes which we will
refer to as the random feature model (RF) [6], and the neural

tangent model (NT) [4]: for w; g5 N(0, Iy),

Fren(W) = {fN(a:) = Zﬁ;aia((wi,a)}) . a; € R},

N

FnTN(W) = {fN(w) = (a;,z)o’((w;,x)) : a; € Rd}.

i=1
Blue: random and fixed. Red: parameters to be optimized.

Questions

e Do RF/NT models provide a good approximation to
effectively trained NN (e.g. by SGD)?

® Do RF/NT learn good representations of the data?

We provide two simple settings where we can fully characterize
the behavior of RF, NT and SGD-trained NN. In these settings,

these two questions admit negative answers.

The prediction risk achieved within any of the regimes M &
{RF,NT,NN} is defined by

Rux(f) = min_ E{(f.(@) - f@)’}.

feFun(W) )
R (foi €)= B{ (fu(x) — fla; £,2))’},

where f(-;/,¢) is the neural network produced by ¢ steps of
stochastic gradient descent (SGD) where each sample is used
once, and the stepsize is set to ¢
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Quadratic Functions (QF)

Setting: «; ~ N(0, I;) and responses
Y; = f*(wz) = by + <33@, BCBZ>, with B > 0.

We take a quadratic activation o(u) = u*+ ¢y and consider the
high-dimensional regime: N,d — oo, N/d — p € (0, 00).

Results [5]:
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Figure 1: Prediction (test) error in fitting a quadratic function in d = 450
dimensions, as a function of the number of neurons V. Lines are analytical
predictions obtained in this paper [5], and dots are empirical results.

e Naive RF/NT do not learn good representations of the data.

e SGD-trained NN learns the most important eigendirections
of f. and fits them, hence surpassing the NT model which
remains confined to a random subspace spanned by w;.

e There exists an arbitrary large gap between the
SGD-trained networks and the neural tangent model.

Neural networks are superior to linearized
model such as RF and NT, because they can
learn a good representation of the data.

Mixture of Gaussians

Setting: y; = +1 with equal probability 1/2, and a;|y;
+1 ~NO, I;+A), x;ly; = —1 ~ N(0, I;— A). Take o(u)
u? + ¢y and w; ~ N(0, I;/d).
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e See Figure 2 for analytical and empirical results.
e We recover a similar behavior as in the QF model.
e Note that the Bayes error is not achieved in this model.

e We do not show convergence of SGD in this setting but we
expect a similar result to the QF model to hold.

Analytical Predictions for QF

Random features model

Theorem 1 ([5]) Take o(z) = z* — 1, w; ~ N(0,T).
Then, as N,d — oo with N/d — p

pd{B,T)? - ogp(1)

Ree v (fi) = I fllZ, |
|BI3.(1 + pd||T[|3)

o See [5] for the Theorem for general activation function o.

e The risk highly depends on the weight distribution.

e In particular for any activation function,

o5 _ (1 (B )
IBl#ITz

The risk vanishes only if I' o« B is chosen perfectly and

p — 00. The asymptotic risk is independent of the
non-linearity!
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Neural Tangent model

Theorem 2 ([5]) Take o(x) = z°, w; ~ N(0,1,/d).
Then, as N,d — oo with N/d — p
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e For N < d, NT fits f, along a random subspace determined
by the weights w; (not the most important subspace).

o For N > d, weights span the whole space (vanishing risk).

Fully-trained NN model

Theorem 3 ([5]) Take o(x) = z*. Then, as N,d — o
with N/d — p

lim limP(‘RNNW( fil=t/e,2) — Rawn(f)| = 6)

t—00 e—0

d
Runn(fe) =2 ) \i(B),

i=N+1
with \(B) > -+ > M\g(B) ordered eigenvalues of B.

e Here, we studied a one-pass version of SGD. The probability
is over the random initialization W and the samples.

e The global convergence is proved by showing convergence of
SGD to the gradient flow in the population risk and then
proving a strict saddle property for the population risk.

e SGD-learned NN fits f, along the most important subspace
(the N principal eigendirections of B).
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How General are these Phenomena?

e The separation between NN and NT is established only for
N < d. We expect the separation to generalize to N > d by
considering higher order polynomials: for third- or
higher-order polynomials, NT does not achieve vanishing
risk at any p € (0,00) (see [3]).

e While we are only able to provide theory for NN and NT for
quadratic activation, we performed extensive experiments
with other non-linearities. See Figure 3 for fitting a
quadratic function with ReLu activation. In particular, the
positive gap between NN and NT is still present for N < d.
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Figure 2: Prediction (test) error in fitting a mixture of Gaussians in d = 450
dimensions, as a function of V. Lines are analytical predictions obtained in
this paper [5], and dots are empirical results. Dotted line is the Bayes error.
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Figure 3: Empirical prediction (test) error in fitting a quadratic function in
d = 450 dimensions with RelLu activation, as a function of V.
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