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Introduction

Consider the function class of two-layers neural networks

FNN,N =
{
f (x) =

N∑
i=1

aiσ(〈wi,x〉) : ai ∈ R, wi ∈ Rd
}
.

• Linearization around (random) parameter θ0
i = (a0

i ,w
0
i)

fNN(x;θ) ≈ fNN(x;θ0) + 〈θ − θ0,∇θfNN(x;θ0)〉
• Lazy training [1]: under certain initialization and for a large
number of parameters N , the parameters θ learned by SGD
stay close to the initialization θ0 and the above
approximation is accurate [2].
• In this regime, learning the neural network is essentially the
same as learning the linearized part:

fNN(x;θ) ≈0 +
N∑
i=1

∆aiσ(〈w0
i ,x〉)︸ ︷︷ ︸

Second layer linearization

+
N∑
i=1

a0
iσ
′(〈w0

i ,x〉)〈∆wi,x〉︸ ︷︷ ︸
First layer linearization

We consider the following two function classes which we will
refer to as the random feature model (RF) [6], and the neural
tangent model (NT) [4]: for wi

i.i.d.∼ N(0, Id),

FRF,N(W ) =
{
fN(x) =

N∑
i=1

aiσ(〈wi,x〉) : ai ∈ R
}
,

FNT,N(W ) =
{
fN(x) =

N∑
i=1
〈ai,x〉σ′(〈wi,x〉) : ai ∈ Rd

}
.

Blue: random and fixed. Red: parameters to be optimized.

Questions

•Do RF/NT models provide a good approximation to
effectively trained NN (e.g. by SGD)?
•Do RF/NT learn good representations of the data?

We provide two simple settings where we can fully characterize
the behavior of RF, NT and SGD-trained NN. In these settings,
these two questions admit negative answers.

The prediction risk achieved within any of the regimes M ∈
{RF,NT,NN} is defined by

RM,N(f∗) = min
f̂∈FM,N(W )

E
{

(f∗(x)− f̂ (x))2
}
,

RNN,N(f∗; `, ε) = E
{

(f∗(x)− f̂(x; `, ε))2
}
,

where f̂( · ; `, ε) is the neural network produced by ` steps of
stochastic gradient descent (SGD) where each sample is used
once, and the stepsize is set to ε

Quadratic Functions (QF)

Setting: xi ∼ N(0, Id) and responses
yi = f∗(xi) ≡ b0 + 〈xi,Bxi〉, with B � 0.

We take a quadratic activation σ(u) = u2 +c0 and consider the
high-dimensional regime: N, d→∞, N/d→ ρ ∈ (0,∞).

Results [5]:

Figure 1: Prediction (test) error in fitting a quadratic function in d = 450
dimensions, as a function of the number of neurons N . Lines are analytical
predictions obtained in this paper [5], and dots are empirical results.

•Naive RF/NT do not learn good representations of the data.
• SGD-trained NN learns the most important eigendirections
of f∗ and fits them, hence surpassing the NT model which
remains confined to a random subspace spanned by wi.
•There exists an arbitrary large gap between the
SGD-trained networks and the neural tangent model.

Neural networks are superior to linearized
model such as RF and NT, because they can
learn a good representation of the data.

Mixture of Gaussians

Setting: yi = ±1 with equal probability 1/2, and xi|yi =
+1 ∼ N(0, Id+ ∆), xi|yi = −1 ∼ N(0, Id−∆). Take σ(u) =
u2 + c0 and wi ∼ N(0, Id/d).

RM,N(PI,∆) ≈



1
1 + ρ

1+2ρ ·
r̃(∆)2

2d

for M = RF,

1
1 + κ(ρ,∆)‖∆‖2

F/2
for M = NT,

1
1 +∑N∧d

i=1 λi(∆)2/2
for M = NN.

• See Figure 2 for analytical and empirical results.
•We recover a similar behavior as in the QF model.
•Note that the Bayes error is not achieved in this model.
•We do not show convergence of SGD in this setting but we
expect a similar result to the QF model to hold.

Analytical Predictions for QF

Random features model

Theorem 1 ([5]) Take σ(x) = x2 − 1, wi ∼ N(0,Γ).
Then, as N, d→∞ with N/d→ ρ

RRF,N(f∗) = ‖f∗‖2
L2

1− ρd〈B,Γ〉2

‖B‖2
F

(
1 + ρd‖Γ‖2

F

) + od,P(1)

 .

• See [5] for the Theorem for general activation function σ.
•The risk highly depends on the weight distribution.
• In particular for any activation function,

lim
ρ→∞

lim
d→∞,N/d→ρ

RRF,N(f∗)
‖f∗‖2

L2

= lim
d→∞

(
1− 〈B,Γ〉2

‖B‖2
F‖Γ‖2

F

)
.

The risk vanishes only if Γ ∝ B is chosen perfectly and
ρ→∞. The asymptotic risk is independent of the
non-linearity!

Neural Tangent model

Theorem 2 ([5]) Take σ(x) = x2, wi ∼ N(0, Id/d).
Then, as N, d→∞ with N/d→ ρ

EW [RNT,N(f∗)]
‖f∗‖2

L2
=
{

(1− ρ)2
+ + ρ(1− ρ)+

Tr(B)2

d ‖B‖2
F

+ od(1)
}
.

• For N < d, NT fits f∗ along a random subspace determined
by the weights wi (not the most important subspace).
• For N ≥ d, weights span the whole space (vanishing risk).

Fully-trained NN model

Theorem 3 ([5]) Take σ(x) = x2. Then, as N, d→∞
with N/d→ ρ

lim
t→∞

lim
ε→0

P
(∣∣∣∣RNN,N(f∗; ` = t/ε, ε)−RNN,N(f∗)

∣∣∣∣ ≥ δ) = 0,

RNN,N(f∗) = 2
d∑

i=N+1
λi(B)2,

with λ1(B) ≥ · · · ≥ λd(B) ordered eigenvalues of B.

•Here, we studied a one-pass version of SGD. The probability
is over the random initializationW 0 and the samples.
•The global convergence is proved by showing convergence of
SGD to the gradient flow in the population risk and then
proving a strict saddle property for the population risk.
• SGD-learned NN fits f∗ along the most important subspace
(the N principal eigendirections of B).

How General are these Phenomena?

•The separation between NN and NT is established only for
N < d. We expect the separation to generalize to N ≥ d by
considering higher order polynomials: for third- or
higher-order polynomials, NT does not achieve vanishing
risk at any ρ ∈ (0,∞) (see [3]).
•While we are only able to provide theory for NN and NT for
quadratic activation, we performed extensive experiments
with other non-linearities. See Figure 3 for fitting a
quadratic function with ReLu activation. In particular, the
positive gap between NN and NT is still present for N < d.

Figure 2: Prediction (test) error in fitting a mixture of Gaussians in d = 450
dimensions, as a function of N . Lines are analytical predictions obtained in
this paper [5], and dots are empirical results. Dotted line is the Bayes error.
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Figure 3: Empirical prediction (test) error in fitting a quadratic function in
d = 450 dimensions with ReLu activation, as a function of N .
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