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B. Mean-Field description of SGD on two-layers NNs.

C. Example: classifying centered anisotropic Gaussians.

D. Dimension-free bounds between SGD dynamics and mean-field PDE.

E. Outline of the proof of the dimension-free bounds.

Theodor Misiakiewicz (Stanford) Mean-Field neural networks October 28th, 2021 2 / 24



Setting

Classical supervised learning setting:
I Given n i.i.d. samples {(yi , x i )}i∈[n]:

I x i ∈ Rd vector of covariates.
I yi ∈ R response variable.
I Common probability distribution (yi , x i ) ∼i.i.d. P ∈ P(R× Rd ).

I Learn model f̂ : Rd → R s.t. given a new data point xnew predicts ynew via f̂ (xnew).
Measure the quality of the prediction via the squared error loss:

R(P, f̂ ) := E(y,x)∼P
{(

y − f̂ (x)
)2}

.

I Take f̂ parametrized by a vector of parameters θ ∈ Rp, i.e., f̂ : (x ,θ)→ f̂ (x ;θ).

I E.g., fit θ̂ by minimizing the empirical risk

R̂(n)(θ) :=
1
n

n∑
i=1

[
yi − f̂ (x i ;θ)

]2
.

Theodor Misiakiewicz (Stanford) Mean-Field neural networks October 28th, 2021 3 / 24



Setting

Classical supervised learning setting:
I Given n i.i.d. samples {(yi , x i )}i∈[n]:

I x i ∈ Rd vector of covariates.
I yi ∈ R response variable.
I Common probability distribution (yi , x i ) ∼i.i.d. P ∈ P(R× Rd ).

I Learn model f̂ : Rd → R s.t. given a new data point xnew predicts ynew via f̂ (xnew).
Measure the quality of the prediction via the squared error loss:

R(P, f̂ ) := E(y,x)∼P
{(

y − f̂ (x)
)2}

.

I Take f̂ parametrized by a vector of parameters θ ∈ Rp, i.e., f̂ : (x ,θ)→ f̂ (x ;θ).

I E.g., fit θ̂ by minimizing the empirical risk

R̂(n)(θ) :=
1
n

n∑
i=1

[
yi − f̂ (x i ;θ)

]2
.

Theodor Misiakiewicz (Stanford) Mean-Field neural networks October 28th, 2021 3 / 24



Setting

Classical supervised learning setting:
I Given n i.i.d. samples {(yi , x i )}i∈[n]:

I x i ∈ Rd vector of covariates.
I yi ∈ R response variable.
I Common probability distribution (yi , x i ) ∼i.i.d. P ∈ P(R× Rd ).

I Learn model f̂ : Rd → R s.t. given a new data point xnew predicts ynew via f̂ (xnew).
Measure the quality of the prediction via the squared error loss:

R(P, f̂ ) := E(y,x)∼P
{(

y − f̂ (x)
)2}

.

I Take f̂ parametrized by a vector of parameters θ ∈ Rp, i.e., f̂ : (x ,θ)→ f̂ (x ;θ).

I E.g., fit θ̂ by minimizing the empirical risk

R̂(n)(θ) :=
1
n

n∑
i=1

[
yi − f̂ (x i ;θ)

]2
.

Theodor Misiakiewicz (Stanford) Mean-Field neural networks October 28th, 2021 3 / 24



Setting

Classical supervised learning setting:
I Given n i.i.d. samples {(yi , x i )}i∈[n]:

I x i ∈ Rd vector of covariates.
I yi ∈ R response variable.
I Common probability distribution (yi , x i ) ∼i.i.d. P ∈ P(R× Rd ).

I Learn model f̂ : Rd → R s.t. given a new data point xnew predicts ynew via f̂ (xnew).
Measure the quality of the prediction via the squared error loss:

R(P, f̂ ) := E(y,x)∼P
{(

y − f̂ (x)
)2}

.

I Take f̂ parametrized by a vector of parameters θ ∈ Rp, i.e., f̂ : (x ,θ)→ f̂ (x ;θ).

I E.g., fit θ̂ by minimizing the empirical risk

R̂(n)(θ) :=
1
n

n∑
i=1

[
yi − f̂ (x i ;θ)

]2
.

Theodor Misiakiewicz (Stanford) Mean-Field neural networks October 28th, 2021 3 / 24



Two-layers neural networks

I Need a rich enough class of functions to fit complex data.

I Consider two-layers neural networks:

f̂N(x ;θ) :=
1
N

N∑
i=1

σ∗(x ;θi ) .

I N: number of hidden units (neurons).
I σ∗ : Rd × RD is an activation function.
I θi ∈ RD parameters which we denote collectively θ = (θ1, . . . ,θN) ∈ RND .

I Standard choice: θi = (ai , bi ,w i ) with ai ∈ R, bi ∈ R,w i ∈ Rd , D = d + 2,

σ∗(x ;θi ) = aiσ(〈w i , x〉+ bi ) ,

where σ : R→ R, e.g.: σ(x) = max(x , 0) (ReLU) or σ(x) = 1
1+e−2x (sigmoid).
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Approximation properties

I Is the function class of two-layers NNs rich enough?

I Universal Approximation [Cybenko, 1989]: Take σ : R→ R continuous with
limx→∞ σ(x) = 1 and limx→−∞ σ(x) = 0. For any E{f (x)2} <∞ and ε > 0, there
exists N = N(ε, f ) such that

Rapprox(f ;N) := inf
{(ai ,bi ,w i )}

E
{[

f (x)− 1
N

N∑
i=1

aiσ(〈w i , x〉+ bi )
]2}
≤ ε .

I How big should N(ε, f ) be for reasonable functions?

I Barron’s Theorem [Barron, 1993]: ‖x‖2 ≤ r on the support of P and f : Rd → R
has Fourier transform F such that f (x) =

∫
e i〈x,w〉F (w)dw . Then

Rapprox(f ;N) ≤ ∆(f )2

N
, ∆(f ) := 2r

∫
‖w‖2|F (w)|dw .

Hence, N(ε, f ) ≤ ∆(f )2/ε.
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Insights from approximation theory

I Suggest that we should represent two-layers NN with distribution ρ ∈ P(RD):

f̂ (x ; ρ) =

∫
σ∗(x ;θ)ρ(dθ) .

E.g., take ρ̂(N) = N−1
∑

i≤N δθi for finite networks: f̂N(x ;θ) = f̂ (x ; ρ̂(N)).

I Small population risk achieved by many NNs: what matters is ρ, not θ1, . . . ,θN .
Behavior is insensitive to the number of neurons N, as long as it is large enough for
ρ̂(N) to approximate ρ.

I Minimum number of neurons to achieve certain accuracy depends on the intrinsic
regularity of f (e.g., ∆(f )) and not on the dimension d .

These insights concern ideal representations.
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Training with SGD

I In practice, the parameters of NNs are learned by SGD or its variants.

I SGD: initialize weights θi ∼iid ρ0. At each step k, sample (xk , yk) and update

θk+1
i = θk

i + ε
(
yk − f̂N(xk ;θk)

)
∇θiσ∗(xk ;θk

i ) .

ε: step size; θk = (θk
i )i≤N : parameters after k iterations.

What are the properties of NNs reached by SGD?

I Do they have small test error? Are they fairly insensitive to the number N of neurons
(as long as N is large enough) and the dimension d , as in approximation theory?

I Recent analysis connects naturally SGD dynamics and approximation theory.
[Mei,Montanari,Nguyen,’18], [Chizat,Bach,’18], [Sirignano,Spiliopoulos,’18], [Rotskoff,Vanden-Eijnden,’18]

Mean-field theory: SGD dynamics admits an asymptotic description as
N →∞, ε→ 0 in terms of a PDE in the space of probability distributions on RD .
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Mean-field limit

I One-pass SGD: training examples are never revisited, i.e., {(xk , yk)}k≥1 are iid.

I Denote ρ̂(N)
k = N−1

∑
i≤N δθk

i
after k SGD steps with step size ε and θ0i ∼iid ρ0:

ρ̂
(N)
t/ε ⇒ ρt , as N →∞, ε→ 0 .

I Evolution of ρt given by the following PDE (of McKean-Vlasov type):

∂tρt = ∇θ ·
(
ρt∇θΨ(θ; ρt)

)
,

Ψ(θ; ρt) ≡ V (θ) +

∫
U(θ,θ′)ρ(dθ′) ,

where V (θ) := −E{yσ∗(x ;θ)} and U(θ1,θ2) := Ex{σ∗(x ;θ1)σ∗(x ;θ2.)}.

This is referred to as the mean-field description, or distributional dynamics (DD).

I Wasserstein gradient flow on risk R(ρ) := E{(y − f̂ (x ; ρ))2}, with ρ ∈ P(RD)
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Example: classifying centered anisotropic Gaussians (I)

Data distribution (y , x):

With proba 1/2: y = +1, x ∼ N(0,Σ+),

With proba 1/2: y = −1, x ∼ N(0,Σ−),

• Σ± = Udiag((1±∆)2 · Ids0 , Idd−s0)UT .

• U∈ Rd×d orthogonal matrix.

• PV : projection on the subspace V = span(U1:s0).

Consider activation function σ∗(x ;θ) = σ(〈x ,w〉) (i.e., θ = w ∈ Rd).

Goal: study SGD on

RN(θ) = E
{(

y − 1
N

N∑
i=1

σ(〈x ,w i 〉)
)2}

.

Theodor Misiakiewicz (Stanford) Mean-Field neural networks October 28th, 2021 9 / 24



Example: classifying centered anisotropic Gaussians (I)

Data distribution (y , x):

With proba 1/2: y = +1, x ∼ N(0,Σ+),

With proba 1/2: y = −1, x ∼ N(0,Σ−),

• Σ± = Udiag((1±∆)2 · Ids0 , Idd−s0)UT .

• U∈ Rd×d orthogonal matrix.

• PV : projection on the subspace V = span(U1:s0).

Consider activation function σ∗(x ;θ) = σ(〈x ,w〉) (i.e., θ = w ∈ Rd).

Goal: study SGD on

RN(θ) = E
{(

y − 1
N

N∑
i=1

σ(〈x ,w i 〉)
)2}

.

Theodor Misiakiewicz (Stanford) Mean-Field neural networks October 28th, 2021 9 / 24



Example: classifying centered anisotropic Gaussians (II)

Mean-field description of SGD in this problem:

I (x , y) ∼ P is invariant under O(V)×O(V⊥).

I Denote r1 := ‖PVw‖2 and r2 := ‖(Id− PV)w‖2. If ρ0 is spherically symmetric,
solution ρt of DD remains uniform conditional on r1, r2:

ρt(w) = ρ̄t(r1, r2)× µs0(PVw/r1)× µd−s0((Id− PV)w/r2), µp ≡ Unif(Sp−1) .

(global optimum must be of this form by Jensen’s inequality).

I PDE on ρt ∈ P(Rd) simplifies to PDE on ρ̄t ∈ P([0,∞)2):

∂t ρ̄t(r1, r2) = ∇ ·
(
ρ̄t(r1, r2)∇Ψ̄(r1, r2; ρ̄t)

)
.

I PDE in 2 dimensions: efficient to solve numerically, can classify stationary points...

[Mei, Montanari, Nguyen, 2018] for some good initialization ρ̄0 and activation σ,
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Example: classifying centered anisotropic Gaussians (III)

ReLu activation:
σ∗(x ;θi ) = ai (〈x ,w i 〉+ bi )+.

Evolution of some statistics:
d = 320, s0 = 60, N = 800,
ε = 2× 10−4.

Evolution of ρ̄(r1) for d = s0 = 40,
N = 800, ∆ = 0.8, ε = 10−6,
ρ0 = N(0, 0.82Idd/d).

[Mei, Montanari, Nguyen, 2018]
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Example: classifying centered anisotropic Gaussians (IV)

Evolution of the risk for
d = s0 = 320, ∆ = 0.5, N = 800.

Starting at two initializations:
N(0, κ2Idd/d) with κ ∈ {0.1, 0.4}.

Non-monotonic activation function.

[Mei, Montanari, Nguyen, 2018]
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Mean-field: good theory for SGD?

Mean-field description:

I Independent of N (as long as N is large enough).

Simplify the analysis of SGD:

I Factors-out some landscape complexities of NNs (e.g., permutation invariance).

I Allows to exploit symmetries in the data distribution P.

I Can focus on studying the PDE (global convergence, stationary points, etc.).

For this approach to be meaningful:

In what regime is the distributional dynamics a good approximation to SGD?
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Concentration of SGD process on PDE

More precisely:

I θk = (θk
i )i≤N : weights after k steps of one-pass SGD with step-size ε and

(θ0i )i≤N ∼iid ρ0.

I (ρt)t≥0: solution of the distribution dynamics with initialization ρ0.

Goal: compare population risks RN(θk) and R(ρt).

Show that for T ≥ 0 and with probability at least 1− δ,

sup
k∈[0,T/ε]∪N

∣∣∣RN(θk)− R(ρkε)
∣∣∣ ≤ Error(T , ε,N, δ, . . .) .
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Assumptions

Take θ = (a,w) with a ∈ R and w ∈ RD−1 and activation σ∗(x ;θ) = aσ(x ;w).

Denote V (θ) = av(w) and U(θ1,θ2) = a1a2u(w1,w2) where

v(w) = −E{yσ(x ;w)}, u(w1,w2) = Ex{σ(x ;w1)σ(x ;w2)} .

Assumptions:

A1. σ : Rd × RD−1 and y are bounded, i.e., ‖σ‖∞, |y | ≤ K1.
For any w , ∇wσ(x ;w) is K1-sub-Gaussian with respect to x ∼ P.

A2. Functions w 7→ v(w) and (w1,w2) 7→ u(w1,w2) are differentiable with bounded
and Lipschitz gradients: ‖∇v(w)‖2 ≤ K2, ‖∇u(w1,w2)‖2 ≤ K2,

‖∇v(w)−∇v(w ′)‖2 ≤ K2‖w − w ′‖2 ,
‖∇u(w1,w2)−∇u(w ′1,w

′
2)‖2 ≤ K2‖(w1,w2)− (w ′1,w

′
2)‖2 .

A3. Initialization ρ0 ∈ P(RD) is supported on |ai | ≤ K3.
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Dimension-free bound (I)

Consider two cases:

General coefficients: initialize parameters θ0i = (a0i ,w0
i ) as (θ0i )i≤N ∼iid ρ0. Update

both ai and w i during the dynamics.

Fixed coefficients: same initialization but only update w i during the dynamics.

Theorem (Mei, Misiakiewicz, Montanari, 2019)

Let σ∗ verifies assumptions A1-A3. Take T ≥ 1.

Fixed coefficients: ∃K depending only on K1-K3 such that with proba at least 1− e−z2 ,

sup
k∈[0,T/ε]∪N

∣∣∣RN(θk)− R(ρkε)
∣∣∣ ≤ KeKT

1√
N

[
√

logN + z] + KeKT [
√

D + log(N) + z]
√
ε .

General coefficients: same result with eKT → eKT
3
.
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Dimension-free bound (II)

With probability at least 1− 1/N:

sup
k∈[0,T/ε]∪N

∣∣∣RN(θk)− R(ρkε)
∣∣∣ ≤ KeKT

√
logN

N︸ ︷︷ ︸
error due to finite N

+ KeKT
√

D + log(N)
√
ε︸ ︷︷ ︸

error due to discretization ε > 0

.

Provided T ,K = O(1), the mean-field approximation is accurate for

I Number of neurons: N � 1 independent of D, and only depends on intrinsic
properties of the activation and data distribution.

I Step-size: ε� 1/D.

‘Dimension-free bound’: N does not depend directly on D.
The Ki ’s in the assumption can potentially depend on D. However in a number of setting
of interests, the Ki ’s are independent of D.
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Application: classifying centered anisotropic Gaussians (V)

I Σ± = Udiag((1±∆)2 · Ids0 , Idd−s0)UT with s0 = γd and γ ∈ (0, 1).

I σ(t) = 0 for t ≤ 0, σ(t) = 1 for t ≥ 1, and σ(t) = t for 0 ≤ t ≤ 1 (truncated ReLu).

I (w0
i )i≤N ∼iid ρ̄0 × Unif(Sd−1) with ρ̄0 with bounded density and Rd=∞(ρ̄0) < 1.

Theorem (Mei, Misiakiewicz, Montanari, 2019)

For any η,∆, δ > 0, there exists

d0 ≡ d0(η, ρ̄0,∆, γ), C0 ≡ C0(η, ρ̄0,∆, γ), T ≡ T (η, ρ̄0,∆, γ) ,

such that for d ≥ d0, N ≥ C0 and ε ≤ 1/(C0d), we have at k = T/ε with probability at
least 1− δ,

RN(θk) ≤ inf
ρ
R(ρ) + η/2 ≤ inf

θ∈RN×d
RN(θ) + η .

For N = O(1) and n = O(d), one-pass SGD finds a near global minimizer of the
population risk (near global minimizer over all two-layers neural networks).
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Global convergence of SGD with mean-field theory

Strategy to prove (quantitative) global convergence of SGD:

I Global convergence of the PDE (e.g., [Chizat, Bach, 2018]).

I Bound the time to convergence Tc (e.g., [Javanmard, Mondelli, Montanari, 2019]).

I Bound between SGD and PDE: unfortunately, current bound is eKT/
√
N, hence it is

non-vacuous only if Tc � log(N).

Strategy already applies to some non-trivial examples (e.g., anisotropic Gaussians).
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Noisy SGD and entropic regularization

I Noisy SGD:

θk+1
i = θk

i + ε(yk − f̂N(xk ;θk))∇θiσ∗(xk ;θk
i ) +

√
ε/β · g k

i ,

where g k
i ∼iid N(0, IdD).

I Mean-field description:

∂tρt = ∇θ ·
(
ρt∇θΨ(θ; ρt)

)
+

1
β

∆θρt .

I Wasserstein gradient flow for the free energy: Fβ(ρ) = R(ρ) + 1
β

∫
ρ(θ) log ρ(θ)dθ.

I [Mei, Montanari, Nguyen, 2018] convergence ρt ⇒ ρβ∗ global minimizer Fβ(ρ).
Under some regularity conditions,

R(ρβ∗ ) ≤ inf
ρ
R(ρ) + O

(D
β

)
.
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Bounds with noisy SGD

Theorem (Mei, Misiakiewicz, Montanari, 2019)

Let σ∗ verifies assumptions A1-A3, τ ≤ K4 and T ≥ 1.

Fixed coefficients: ∃K depending only on K1-K4 such that with proba at least 1− e−z2

sup
k∈[0,T/ε]∪N

∣∣∣RN(θk)− R(ρkε)
∣∣∣ ≤ KeKT

1√
N

[
√

logN + z] + KeKT [
√

D + log(N) + z]
√
ε .

General coefficients: ∃K depending only on K1-K4 such that with proba at least 1− e−z2

sup
k∈[0,T/ε]∪N

∣∣∣RN(θk)− R(ρkε)
∣∣∣ ≤ Kee

KT [
√
log N+z2][

√
D logN + log3/2(NT ) + z5]/

√
N

+ Kee
KT [
√

log N+z2][
√
D log(NT/ε) + log3/2(N) + z6]

√
ε .

General coefficients: harder to control. The bound is not dimension-free and only allows
us to control the approximation error up to T = o(log logN) instead of T = o(logN).

Theodor Misiakiewicz (Stanford) Mean-Field neural networks October 28th, 2021 21 / 24



Outline of the proof of the non-asymptotic bound (I)

Ingredients: isolating different error terms + coupling + concentration-of-measure.

Consider four coupled dynamics:
I Nonlinear dynamics (ND): θ

0
i ∼iid ρ0,

d
dt

θ
t
i = −

[
∇V (θ

t
i ) +

∫
∇1U(θ

t
i ,θ)ρt(dθ)

]
.

I Particle dynamics (PD): θ0i = θ
0
i ,

d
dt

θt
i = −

[
∇V (θt

i ) +
1
N

N∑
j=1

∇1U(θt
i ,θ

t
j )
]
.

I Gradient descent (GD): θ̃
0
i = θ

0
i ,

θ̃
k+1
i = θ̃

k
i − ε

[
∇V (θ̃

k
i ) +

1
N

N∑
j=1

∇1U(θ̃
k
i , θ̃

k
j )
]
.

I Stochastic gradient descent (SGD): θ0i = θ
0
i ,

θk+1
i = θk

i − ε
[
− yk∇θσ∗(xk ;θk

i ) +
1
N

N∑
j=1

σ∗(xk ;θk
j )∇θσ∗(xk ;θk

i )
]
.
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Outline of the proof of the non-asymptotic bound (II)

∣∣∣R(ρkε)− RN(θk)
∣∣∣ ≤ ∣∣∣R(ρkε)− RN(θ

kε
)
∣∣∣︸ ︷︷ ︸

PDE−ND

+
∣∣∣RN(θ

kε
)− RN(θkε)

∣∣∣︸ ︷︷ ︸
ND−PD

+
∣∣∣RN(θkε)− RN(θ̃

k
)
∣∣∣︸ ︷︷ ︸

PD−GD

+
∣∣∣RN(θ̃

k
)− RN(θk)

∣∣∣︸ ︷︷ ︸
GD−SGD

.

I PDE-ND: θ
kε ∼iid ρkε + McDiarmid’s inequality.

I ND-PD: McDiarmid’s inequality + Gronwall’s inequality.

I PD-GD: Lipschitzness + Gronwall’s lemma.

I GD-SGD: Azuma-Hoeffding inequality + Gronwall’s lemma.

Details in:

Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit.
Mei, Misiakiewicz, Montanari, COLT 2019.
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Final remarks

I Mean-field theory: describe SGD for N →∞, ε→ 0, in terms of a PDE in the
space of probability distributions.

I It allows to focus on key elements of the dynamics (global convergence, stationary
points), and in some cases vastly simplifies the analysis of SGD.

I Dimension-free bounds: to approximate the SGD dynamics by the distributional
dynamics, we only need N = O(1) that depends on intrinsic properties of the
activation and data distribution, and ε = O(1/D).

I Capturing the correct dimension-dependence is crucial in order to compare neural
networks to other learning techniques.

I Lots of open problems: global convergence guarantees, bounding convergence time,
improving the exponential dependency in T , multi-layer etc.

Thank you!
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