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A. Approximation theory for two-layers NNs.

B. Mean-Field description of SGD on two-layers NNis.

C. Example: classifying centered anisotropic Gaussians.

D. Dimension-free bounds between SGD dynamics and mean-field PDE.

E. Outline of the proof of the dimension-free bounds.
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Setting

Classical supervised learning setting;:
> Given n i.i.d. samples {(yi, xi)}ie[n):

> x; € RY vector of covariates.
> y; € R response variable.
> Common probability distribution (y;, x;) ~i.i.q. P € P(R x RY).
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Setting

Classical supervised learning setting;:
> Given n i.i.d. samples {(yi, xi)}ie[n):

> x; € RY vector of covariates.
> y; € R response variable.
> Common probability distribution (y;, x;) ~i.i.q. P € P(R x RY).

> Learn model f : RY — R s.t. given a new data point Xnew predicts ynew Via f (Xnew)-
Measure the quality of the prediction via the squared error loss:

R(P, f) = By nep{ (v — £(x))*}.

> Take f parametrized by a vector of parameters 8 € R”, i.e., f : (x,0) — f(x;8).

> E.g., fit & by minimizing the empirical risk

R"(6) := %Z [vi — F(xi:0)].
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Two-layers neural networks

» Need a rich enough class of functions to fit complex data.
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Two-layers neural networks

» Need a rich enough class of functions to fit complex data.

» Consider two-layers neural networks:

=

n(x; 0) = % Z o«(x;0;).

i=1
» N: number of hidden units (neurons).
> o, :RY x RP is an activation function.
> 6, € RP parameters which we denote collectively 8 = (01, ...,8y) € RVP,
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Two-layers neural networks

» Need a rich enough class of functions to fit complex data.

» Consider two-layers neural networks:

=

n(x; 0) = % Z o«(x;0;).

i=1
» N: number of hidden units (neurons).
> o, :RY x RP is an activation function.
> 6, € RP parameters which we denote collectively 8 = (01, ...,8y) € RVP,

» Standard choice: 8; = (a;, bj, w;) with a; e R, b; € R, w; € RY, D=d+2,
U*(X; 0’) = 3,’0’(<W,’,X> + bi)?
where 0 : R — R, e.g.: o(x) = max(x,0) (ReLU) or o(x) =

H_E%ZX (sigmoid).
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Approximation properties

» s the function class of two-layers NNs rich enough?
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Approximation properties

» s the function class of two-layers NNs rich enough?
» Universal Approximation [Cybenko, 1989]: Take o : R — R continuous with

limx— o0 o(x) = 1 and limy— oo o(x) = 0. For any E{f(x)?} < oo and & > 0, there
exists N = N(g, ) such that

Rapprox(fi N) := inf E{[f(x)——z.aa wij, x) + b;) ] }<E

{(aj,bi,wi)}
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Approximation properties

» s the function class of two-layers NNs rich enough?
» Universal Approximation [Cybenko, 1989]: Take o : R — R continuous with

limx— o0 o(x) = 1 and limy— oo o(x) = 0. For any E{f(x)?} < oo and & > 0, there
exists N = N(g, ) such that

Rapprox(fi N) := inf E{[f(x)——z.aa wij, x) + b;) ] }<E

{(aj,bi,wi)}

» How big should N(g, f) be for reasonable functions?

» Barron’s Theorem [Barron, 1993]: ||x||2 <r on the support of Pand f: R = R

has Fourier transform F such that f(x) = [ &' ®* F(w)dw. Then
A(f)?
Rearee1i ) < 200 (1) = 2 [l F(w)]aw.

Hence, N(e, f) < A(f)?/e.
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Insights from approximation theory

> Suggest that we should represent two-layers NN with distribution p € P(RP):
Pxip) = [ o.(xi0)p(a0).

E.g., take p(™ = N1 >_i<n Oe; for finite networks: n(x; 0) = f(x; pV).
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Insights from approximation theory

> Suggest that we should represent two-layers NN with distribution p € P(RP):
Flxip) = [ o.(x:0)p(d6).

E.g., take p(™ = N1 >_i<n Oe; for finite networks: n(x; 0) = f(x; pV).

» Small population risk achieved by many NNs: what matters is p, not 01,...,0y.
Behavior is insensitive to the number of neurons N, as long as it is large enough for
ﬁ(N) to approximate p.
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» Small population risk achieved by many NNs: what matters is p, not 01,...,0y.
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ﬁ(N) to approximate p.

» Minimum number of neurons to achieve certain accuracy depends on the intrinsic
regularity of f (e.g., A(f)) and not on the dimension d.
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Insights from approximation theory

> Suggest that we should represent two-layers NN with distribution p € P(RP):
Flxip) = [ o.(x:0)p(d6).
E.g., take p(™ = N1 >_i<n Oe; for finite networks: n(x; 0) = f(x; pV).
» Small population risk achieved by many NNs: what matters is p, not 01,...,0y.

Behavior is insensitive to the number of neurons N, as long as it is large enough for

ﬁ(N) to approximate p.

» Minimum number of neurons to achieve certain accuracy depends on the intrinsic
regularity of f (e.g., A(f)) and not on the dimension d.

These insights concern ideal representations. )
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Training with SGD

» In practice, the parameters of NNs are learned by SGD or its variants.

> SGD: initialize weights 0; ~iiq po. At each step k, sample (x«, yx) and update
0?“ = 05»( + s(yk - fN(xk; Bk))Vgl.o*(xk; Of)

e: step size; 0% = (8%);<n: parameters after k iterations.
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What are the properties of NNs reached by SGD? )
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(as long as N is large enough) and the dimension d, as in approximation theory?
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Training with SGD

» In practice, the parameters of NNs are learned by SGD or its variants.

> SGD: initialize weights 0; ~iiq po. At each step k, sample (x«, yx) and update
0?“ = 05»( + s(yk - fN(xk; Bk))Vgl.o*(xk; Of)

e: step size; 0% = (8%);<n: parameters after k iterations.

What are the properties of NNs reached by SGD? )

» Do they have small test error? Are they fairly insensitive to the number N of neurons
(as long as N is large enough) and the dimension d, as in approximation theory?

» Recent analysis connects naturally SGD dynamics and approximation theory.
[Mei,Montanari,Nguyen,'18], [Chizat,Bach,’'18], [Sirignano,Spiliopoulos,’18], [Rotskoff,Vanden-Eijnden,’18]

Mean-field theory: SGD dynamics admits an asymptotic description as
N — c0,e — 0 in terms of a PDE in the space of probability distributions on R”.
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Mean-field limit

»> One-pass SGD: training examples are never revisited, i.e., {(xk, yx)}x>1 are iid.
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Mean-field limit
»> One-pass SGD: training examples are never revisited, i.e., {(xk, yx)}x>1 are iid.
» Denote j, pM) = N~ Z:<N ok after k SGD steps with step size € and 82 ~jig po:

ﬁi’/\g:pt, as N = o0, e = 0.
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Mean-field limit
»> One-pass SGD: training examples are never revisited, i.e., {(xk, yx)}x>1 are iid.
» Denote j, pM) = N~ Z:<N ok after k SGD steps with step size € and 82 ~jig po:

ﬁi’)’g:pt, as N = o0, e = 0.

» Evolution of p; given by the following PDE (of McKean-Vlasov type):
Bepe = Vo - (ptvgw(e; pt)) :
V(o) = V(O) + [ U(8.0)9(e0).

where V(0) := —E{yo.(x;0)} and U(01,02) := Ex{o«(x;01)0.(x;02.)}.
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Mean-field limit
»> One-pass SGD: training examples are never revisited, i.e., {(xk, yx)}x>1 are iid.
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ﬁi’)’g:pt, as N = o0, e = 0.

» Evolution of p; given by the following PDE (of McKean-Vlasov type):
Bepe = Vo - (ptvgw(e; pt)) :
V(o) = V(O) + [ U(8.0)9(e0).
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This is referred to as the mean-field description, or distributional dynamics (DD). )
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Mean-field limit
»> One-pass SGD: training examples are never revisited, i.e., {(xk, yx)}x>1 are iid.
» Denote j, pM) = N~ Z:<N ok after k SGD steps with step size € and 82 ~jig po:

ﬁi’)’g:pt, as N = o0, e = 0.

» Evolution of p; given by the following PDE (of McKean-Vlasov type):
Bepe = Vo - (ptvgw(e; pt)) :
V(o) = V(O) + [ U(8.0)9(e0).

where V(0) := —E{yo.(x;0)} and U(01,02) := Ex{o«(x;01)0.(x;02.)}.

This is referred to as the mean-field description, or distributional dynamics (DD). )

> Wasserstein gradient flow on risk R(p) := E{(y — f(x; p))?}, with p € P(RP)
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Example: classifying centered anisotropic Gaussians (1)

Data distribution (y, x):
With proba 1/2: y = 41, x ~ N(0,X;),

With proba 1/2: y = —1, x ~ N(0,X_),

o Y, = Udiag((1+ A)? - Tdsy, Idy—s)UT .
e Uc R?*9 orthogonal matrix.

e Py: projection on the subspace V = span(Uz.s)-
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Example: classifying centered anisotropic Gaussians (1)

Data distribution (y, x):
With proba 1/2: y = 41, x ~ N(0,X;),

With proba 1/2: y = —1, x ~ N(0,X_),

e ¥ = Udiag((1 £ A)? - Tdsy, Idg—s )UT
e Uc R?*9 orthogonal matrix.

e Py: projection on the subspace V = span(Uz.s)-

Consider activation function o.(x;8) = o({x,w)) (i.e., 8 = w € RY).

Goal: study SGD on

~2{(-y Lotew)’}

Theodor Misiakiewicz (Stanford) Mean-Field neural networks October 28th, 2021 9/24



Example: classifying centered anisotropic Gaussians (I1)

Mean-field description of SGD in this problem:

> (x,y) ~ P is invariant under O(V) x O(V14).
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Example: classifying centered anisotropic Gaussians (I1)

Mean-field description of SGD in this problem:
> (x,y) ~ P is invariant under O(V) x O(V14).

» Denote r; := |[|[Pyw||2 and rz := ||(Id — Py)w||2. If po is spherically symmetric,
solution p; of DD remains uniform conditional on ry, ra:
pe(w) = pe(r, r2) X prsg (Pyw/r) X pa—s (Id — Py)w/r2), e = Unif(SP71).

(global optimum must be of this form by Jensen's inequality).

October 28th, 2021 10 /24
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Example: classifying centered anisotropic Gaussians (I1)

Mean-field description of SGD in this problem:
> (x,y) ~ P is invariant under O(V) x O(V14).

» Denote r; := |[|[Pyw||2 and rz := ||(Id — Py)w||2. If po is spherically symmetric,
solution p; of DD remains uniform conditional on ry, ra:

pe(w) = pe(ri, r2) X piso(Pyw/n) X pa—so((1d = Py)w/r2),  pp = Unif(S"77).
(global optimum must be of this form by Jensen's inequality).
> PDE on p;: € P(RY) simplifies to PDE on 5: € P([0, 00)?):

Oepe(r, r2) =V - (pe(rr, 2)VV(ri, r2; pr)) -
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Example: classifying centered anisotropic Gaussians (I1)

Mean-field description of SGD in this problem:
> (x,y) ~ P is invariant under O(V) x O(V14).

» Denote r; := |[|[Pyw||2 and rz := ||(Id — Py)w||2. If po is spherically symmetric,
solution p; of DD remains uniform conditional on ry, ra:

pe(w) = pe(ri, r2) X piso(Pyw/n) X pa—so((1d = Py)w/r2),  pp = Unif(S"77).
(global optimum must be of this form by Jensen's inequality).
> PDE on p;: € P(RY) simplifies to PDE on 5: € P([0, 00)?):

Oepe(r, r2) =V - (pe(rr, 2)VV(ri, r2; pr)) -

» PDE in 2 dimensions: efficient to solve numerically, can classify stationary points...

[Mei, Montanari, Nguyen, 2018] for some good initialization po and activation o,
and denoting sp = vd, the PDE converges to global optimum in time T(A,~, po).
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Example: classifying centered anisotropic Gaussians (I11)

22 T T
3 +
23 —— PDE (A=0.2)
+ SGD (A=0.2)
18f —— PDE (A=0.4)
161 + SGD (A=04)| | . .
. ——PDE (A=0.6) RelLu activation:
4 2 + SGD (A=0.6)| - )
L o.(x;0:) = ai((x,wi) + bi)+.
é’
! Evolution of some statistics:
0.8
N d =320, so = 60, N =800,
' e=2x10""%
0.4
' o
0.2 Mo o) 04 o.sb (mean)
?o" 10’ 102 10° 104 10° 108 107
Iteration
Iteration 10° 008 Iteration 4x10° o1e Iteration 107
012 Evolution of p(r1) for d = so = 40,
0% N =800, A =0.8 =105,
oo po = N(0,0.8%Idy/d).
0.06
o - [Mei, Montanari, Nguyen, 2018]
0.02 ' ! !
0 0 )
01 2 3 4 5 01 2 3 4 5 01 2 3 4 5
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Example: classifying centered anisotropic Gaussians (1V)

Risk
»

——PDE (:=0.1)

+ SGD (x=0.1)
——PDE (:=0.4)
+ SGD (x=0.4)

10
Iteration

10*

a(t)

Theodor Misiakiewicz (Stanford)

Mean-Field neural networks

Evolution of the risk for
d = so =320, A = 0.5, N = 800.

Starting at two initializations:
N(0, k*Idg/d) with x € {0.1,0.4}.

Non-monotonic activation function.

[Mei, Montanari, Nguyen, 2018]

October 28th, 2021 12 /24



Mean-field: good theory for SGD?

Mean-field description:
» Independent of N (as long as N is large enough).

Simplify the analysis of SGD:
> Factors-out some landscape complexities of NNs (e.g., permutation invariance).
» Allows to exploit symmetries in the data distribution P.

» Can focus on studying the PDE (global convergence, stationary points, etc.).
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Mean-field: good theory for SGD?

Mean-field description:
» Independent of N (as long as N is large enough).

Simplify the analysis of SGD:
> Factors-out some landscape complexities of NNs (e.g., permutation invariance).
» Allows to exploit symmetries in the data distribution P.

» Can focus on studying the PDE (global convergence, stationary points, etc.).

For this approach to be meaningful:

In what regime is the distributional dynamics a good approximation to SGD? )
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Concentration of SGD process on PDE

More precisely:

> 0% = (0%)i<n: weights after k steps of one-pass SGD with step-size  and
(8%)i<n ~iid po-

» (pt)t>o: solution of the distribution dynamics with initialization po.

Goal: compare population risks Ry(8%) and R(p:).
Show that for T > 0 and with probability at least 1 — §,

sup Rn(6%) — R(pxe)| < Error(T,e,N,6,...).
k€[0T /<]UN
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Assumptions

Take @ = (a, w) with a € R and w € R?™! and activation o.(x; 8) = ac(x; w).
Denote V(0) = av(w) and U(01,02) = a1a>u(wi, wz) where

v(w) = —E{yo(x; w)}, u(wi, wa) = Ex{o(x; wi)o(x; w2)}.

Assumptions:

Al. o :RY x RP~* and y are bounded, i.e., |0/, |y| < Ki.
For any w, Vyo(x; w) is Ki-sub-Gaussian with respect to x ~ P.

A2. Functions w — v(w) and (w1, w2) — u(wi, wz) are differentiable with bounded
and Lipschitz gradients: |[Vv(w)|2 < K2, ||[Vu(wz, w2)|2 < Ko,

[Vv(w) = Vv(w)]2 < Koflw — w2,

[Vu(wi, w2) — Vu(wy, wa)|l2 < Ka|(wi, wa) — (wy, w3)]l2.

A3. Initialization po € P(RP) is supported on |a;| < Ks.
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Dimension-free bound (1)

Consider two cases:

General coefficients: initialize parameters 82 = (a°, w?) as (6?)i<n ~ii po. Update

both a; and w; during the dynamics.

Fixed coefficients: same initialization but only update w; during the dynamics.
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Dimension-free bound (1)

Consider two cases:

General coefficients: initialize parameters 82 = (a°, w?) as (6?)i<n ~ii po. Update
both a; and w; during the dynamics.

Fixed coefficients: same initialization but only update w; during the dynamics.

Theorem (Mei, Misiakiewicz, Montanari, 2019)

Let 0. verifies assumptions A1-A3. Take T > 1.

Fixed coefficients: 3K depending only on Ki-K3 such that with proba at least 1 — e

’

1
sup ‘RN(Gk) — R(pke)| < Ke"T —=[/log N + z] + Ke""[\/D + log(N) + z]v/= .
k€[o, T /e]UN VN

. . . 3
General coefficients: same result with X7 — X7,
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Dimension-free bound (1)

With probability at least 1 — 1/N:

sup R (6%) — R(pxe)
k€[0,T/<]UN

< KeKTq/% + Ke"T\/D + log(N)v/z .

error due to discretization € > 0

error due to finite N
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Dimension-free bound (1)

With probability at least 1 — 1/N:

sup R (6%) — R(pxe)
kE[0,T/<]UN

< KeKTq/% + Ke"T\/D + log(N)v/z .

.. error due to discretization € > 0
error due to finite N

Provided T, K = O(1), the mean-field approximation is accurate for

» Number of neurons: N > 1 independent of D, and only depends on intrinsic
properties of the activation and data distribution.

» Step-size: £ < 1/D.
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Dimension-free bound (1)

With probability at least 1 — 1/N:

sup R (6%) — R(pxe)
kE[0,T/<]UN

< KeKTq/% + Ke"T\/D + log(N)v/z .

.. error due to discretization € > 0
error due to finite N

Provided T, K = O(1), the mean-field approximation is accurate for

» Number of neurons: N > 1 independent of D, and only depends on intrinsic
properties of the activation and data distribution.

» Step-size: £ < 1/D.

‘Dimension-free bound’: N does not depend directly on D.
The K;'s in the assumption can potentially depend on D. However in a number of setting
of interests, the K;'s are independent of D.
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Application: classifying centered anisotropic Gaussians (V)

> Y. = Udiag((1 £ A)? - Idsy, Idg—s )UT with sp = yd and v € (0,1).
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Application: classifying centered anisotropic Gaussians (V)

> ¥ = Udiag((1 + A)? - Tdsy, Idg—s, )UT with so = vd and 7 € (0,1).
» o(t)=0fort <0,0(t)=1fort>1,and o(t) =t for 0 < t <1 (truncated RelLu).

> (w?),-SN ~iid Po x Unif(S~1) with po with bounded density and Ry—oo(50) < 1.
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Application: classifying centered anisotropic Gaussians (V)

> ¥ = Udiag((1 + A)? - Tdsy, Idg—s, )UT with so = vd and 7 € (0,1).
» o(t)=0fort <0,0(t)=1fort>1,and o(t) =t for 0 < t <1 (truncated RelLu).

> (w?),-SN ~iid Po x Unif(S~1) with po with bounded density and Ry—oo(50) < 1.

Theorem (Mei, Misiakiewicz, Montanari, 2019)

For any n, A, § > 0, there exists
do = d0(777507A7’Y)7 Co= C0(777/30aA7’7)7 T= T(Waﬁo7A7’Y),

such that for d > do, N > Go and € < 1/(Cod), we have at k = T /e with probability at
least 1 — 6,

Rn(0%) <infR(p) +n/2< inf Run(0)+7.
P OcRNxd
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Application: classifying centered anisotropic Gaussians (V)

> ¥ = Udiag((1 + A)? - Tdsy, Idg—s, )UT with so = vd and 7 € (0,1).
» o(t)=0fort <0,0(t)=1fort>1,and o(t) =t for 0 < t <1 (truncated RelLu).

> (w?),-SN ~iid Po x Unif(S~1) with po with bounded density and Ry—oo(50) < 1.

Theorem (Mei, Misiakiewicz, Montanari, 2019)

For any n, A, § > 0, there exists

do = d0(77a507A7’Y)7 Co= C0(777 ﬁo,A,’y), T= T(naﬁmAv'Y)a

such that for d > do, N > Go and € < 1/(Cod), we have at k = T /e with probability at
least 1 — 6,

Rn(0%) <infR(p) +n/2< inf Run(0)+7.
P OcRNxd

For N = O(1) and n = O(d), one-pass SGD finds a near global minimizer of the
population risk (near global minimizer over all two-layers neural networks).
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Global convergence of SGD with mean-field theory

Strategy to prove (quantitative) global convergence of SGD:
» Global convergence of the PDE (e.g., [Chizat, Bach, 2018]).
» Bound the time to convergence T. (e.g., [Javanmard, Mondelli, Montanari, 2019]).

> Bound between SGD and PDE: unfortunately, current bound is e*7 /v/N, hence it is
non-vacuous only if Tc < log(N).

Strategy already applies to some non-trivial examples (e.g., anisotropic Gaussians).
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Noisy SGD and entropic regularization

» Noisy SGD:
0" = 0F + (v — Fu(xk; 0°)) Vo, 0. (xi; 0F) + V/2/B - &7 ,
where gff ~iid N(O7 IdD).
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Noisy SGD and entropic regularization

» Noisy SGD:
01 = 0 + ek — fu(xk: 0°)Vo,00(xi: 0F) + \/2/B - g ,
where gff ~iid N(O7 IdD).

» Mean-field description:
1

Otpr = Vg (ptvew(e; Pt)) + 3

Agpt .
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Noisy SGD and entropic regularization

» Noisy SGD:
07" = 607 + (v — fu(xk; 0"))Vo,0. (x4 67) + Ve /B - g
Where gff ~iid N(O7 IdD).
» Mean-field description:

1

ﬁAept .

Otpr = Vo - (ptvew(e; Pt)) +

> Wasserstein gradient flow for the free energy: Fg(p) = R(p) + % J p(6)log p(0)d6.
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Noisy SGD and entropic regularization

» Noisy SGD:
07" = 607 + (v — fu(xk; 0"))Vo,0. (x4 67) + Ve /B - g
Where gff ~iid N(O7 IdD).
» Mean-field description:

1

Otpr = Vg (ptvew(e; Pt)) + 3

Agpt .

> Wasserstein gradient flow for the free energy: Fg(p) = R(p) + % J p(6)log p(0)d6.

> [Mei, Montanari, Nguyen, 2018] convergence p: = p’ global minimizer Fs(p).
Under some regularity conditions,

R(p?) < infR(p)+0( ).
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Bounds with noisy SGD

Theorem (Mei, Misiakiewicz, Montanari, 2019)

Let o, verifies assumptions A1-A3, 7 < Ky and T > 1.

22

Fixed coefficients: 3K depending only on Ki-Ks such that with proba at least 1 — e~

<KeKTi[ log N + z] + Ke""[\/D + log(N) + z] /= .

Rn(0°) — R(pie)| < TR

sup
ke[0,T/<]uN

22

General coefficients: 3K depending only on Ki-Ks such that with proba at least 1 — e~

sup  |Rn(6%) — R(Pks)‘ < ke "VPENZI[ /Dlog N + log®2(NT) + 2°]/VN

k€[0,T/<]UN

+ Kee V108 N“Z][\FDlog(NT/s) + log®?(N) + 2°] /e .

General coefficients: harder to control. The bound is not dimension-free and only allows
us to control the approximation error up to T = o(loglog N) instead of T = o(log N).
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Outline of the proof of the non-asymptotic bound (1)
Ingredients: isolating different error terms + coupling + concentration-of-measure.

Consider four coupled dynamics:
> Nonlinear dynamics (ND): 85 ~ig po.
%éf = —[vv@f)+/V1U(§f,9)pt(de)}.

> Particle dynamics (PD): 8° = 5?

d
8 =— [VV0)+N;V1U(0,, J)]

» Gradient descent (GD): é? =0,

~k+1

- —a[vv Zle(e,,e)]

> Stochastic gradient descent (SGD): 6° = 8",
1
k+1 _ pk K Kk K
0i+ =0; — 5[ — kaQO'*(Xk; 0; ) + N Zl U*(Xk; 9] )VGU*(XI(; 0; )] .
=
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Outline of the proof of the non-asymptotic bound (II)

R(pe) = Ru(6")] <|R(pic) = Ru(8")| + |Ru(8") — Ru(6")
PDE—-ND ND—-PD
‘R (8%°) — Ru(® ‘+’RN RN(Ok)‘.
PD-GD GD-SGD

> PDE-ND: 6"° ~iid pke + McDiarmid’s inequality.
» ND-PD: McDiarmid's inequality + Gronwall's inequality.
» PD-GD: Lipschitzness + Gronwall's lemma.

» GD-SGD: Azuma-Hoeffding inequality + Gronwall's lemma.

Details in:

Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit.
Mei, Misiakiewicz, Montanari, COLT 2019.
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Final remarks

» Mean-field theory: describe SGD for N — oo,e — 0, in terms of a PDE in the
space of probability distributions.
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Final remarks

» Mean-field theory: describe SGD for N — co,e — 0, in terms of a PDE in the
space of probability distributions.

> It allows to focus on key elements of the dynamics (global convergence, stationary
points), and in some cases vastly simplifies the analysis of SGD.

» Dimension-free bounds: to approximate the SGD dynamics by the distributional
dynamics, we only need N = O(1) that depends on intrinsic properties of the
activation and data distribution, and ¢ = O(1/D).

» Capturing the correct dimension-dependence is crucial in order to compare neural
networks to other learning techniques.

» Lots of open problems: global convergence guarantees, bounding convergence time,
improving the exponential dependency in T, multi-layer etc.

Thank youl J
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