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Abstract—Graphical Models provide a unifying formalism
to deal with two main problems that arise in applications -
complexity and uncertainty - by combining graph theory and
probabilistic theory. Graphical models are used to represent
intricate dependencies among random variables in large-scale
statistical systems and the methods developed in this framework
have been successfully applied to a wide range of domains, which
include machine learning, information theory, bio-informatics,
medicine, combinatorial optimization and economics. In this
paper, we discuss three applications of the graphical model
formalism. First, we present a new general method based on
the Bethe approximation and loop calculus to study decoding of
low-density parity-check codes. In particular, we show that up to
a certain noise threshold, the Bit-Error probability concentrates
at zero for the binary erasure and the binary symmetric channel.
Then we consider the task of learning from partial observations
parameters of a stochastic, dynamic process over a graph. We
investigate two algorithms based on the maximum likelihood
estimator and the recently introduced dynamical message passing
and show that the latter is not only more efficient computationally
but it is also robust in the sparse case with respect to the hidden
nodes. Finally, we consider the problem of reconstructing param-
eters of an Ising model from i.i.d. samples. We introduce a new
“annealed" convex estimator and argue that it is advantageous
over “quenched" pseudo log-likelihood discussed in the literature
before. We also briefly describe promising directions for future
analysis.

I. INTRODUCTION

A. Motivations

Uncertainty is an unavoidable feature of many real-world
applications: the state of a system can be blury/uncertain due
to partial or noisy observations, limitation in our understanding
of causal relations - e.g. between the observed symptoms
and the disease -, or intrinsic non-determinism, e.g. quantum
effects. Probability theory provides us with foundational tools
for computing likelihoods of different outcomes. It also allows
to model random processes, e.g. those emerging in large-
scale systems due to complexity of interactions between many
identical or similar degrees of freedom. Then, a particularly
important question becomes to develop a formalism that
compactly stores multivariate distributions in a way which
allows efficient computations. Graphical Models (GM) is the
technique which helps to achieve this goal.

The key intuition behind GM [1], [2], [3] is modularity:
a complex system is often a combination of simpler parts.
Each variable depends explicitly only on a small number

of other variables, so that the joint probability distribution
function is factorized over small subspaces. A graph behind
GM provides a graph-based representation of the facorization
and the structural dependencies of the distribution. GM allows
a compact encoding of high-dimensional distributions. The
GM representation may be used for direct tasks, such as
computing most probable configuration, marginal distribution
or weighted counting (also called partition function), and it
is also handy for inverse problem of the Machine Learning
type aimed at reconstructing graphs and factor-functions given
observations in terms of samples or marginals.

GM and related computational approaches were in the
center of the recent developments related to our ever increasing
ability to process large data-sets. GM also guided development
of modern probabilistic approaches of satistical physics, infor-
mation theory, machine learning and other related engineering
disciplines. Many flavors of GM, such as Hidden Markov mod-
els, Ising models, Gaussian models, mixture models, models
representing Kalman filters, etc., were introduced and studied.
The unifying formalism of GM has allowed generalization of
previous tools that have been developed for specific problems.
These GM developments have also lead to construction of
general-scope algorithms, such as junction tree, linear pro-
gramming relaxation, max-product, sum-product, expectation
propagation etc. Because of its simplicity and versatility, the
GM formalism has become a natural first-choice framework
to model and design new modular, complex systems.

In the remainder of the Section, we switch gears towards
technical descriptions and define GM. We introduce three of
the GM most popular classes (directed, undirected and factor
graphs) and then briefly summarize the three applications of
the GM formalism discussed in the report.

B. Graphical Models

A graph G = (V,E) is formed by a collection of vertices
V = (1, . . . , N) and a collection of edges E ⊂ V × V . An
edge is defined by a pair of vertices (i, j) ∈ E which can be
directed (i.e. (i, j) 6= (j, i)) or undirected (i.e. (i, j) = (j, i)).
At each vertex i ∈ V is associated a random variable Xi which
takes its value in some space χi which can be continuous (e.g.
χi = R) or discrete (e.g. χi = {0, . . . ,m}). For any subset
C ⊂ V of the vertices, we will denote XC ≡ {Xi|i ∈ C} the
vector of the random variables in C.
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Fig. 1. Three Graphical models classes: (a) directed, (b) undirected and (c) factor graphs

1) Directed graphs: Given a directed graph G = (V,E),
for each edge (i→ j) ≡ (i, j) ∈ E we say that j is the child
of i and conversely i is a parent of j. For each i ∈ V , we
denote π(i) ⊂ V the set of all parents of i. A graphical model
on this graph is then defined by a collection of positive or null
functions fi(Xi|Xπ(i)). The joint probability of the system is
given by:

P (x1, . . . xN ) =
1

Z

∏
i∈V

fi(xi|xπ(i)) (1)

where Z is the normalization factor, also called partition
function in the statistical physics community. If the graph
is acyclic, the fi can be choosen normalized (the factor
corresponds to the marginal distribution P (xi|xπi) of Xi given
Xπ(i)): this class of GM is known in statistics as a bayesian
network (see Figure 1.(a)).

2) Undirected graphs: The graph is now undirected. A
clique C of the graph is a fully connected subset of V , i.e.
∀(i, j) ∈ C×C, (i, j) ∈ E. A graphical model is then defined
by a set C of cliques and positive or null functions associated
to these cliques. The joint distribution is given by:

P (x1, . . . xN ) =
1

Z

∏
C∈C

fC(xC). (2)

This representation is called Markov random field or Gibbs
distribution and has been widely used in image processing
(see Figure 1.(b)).

3) Factor graphs: This representation is an alternative to
the undirected graphs which emphasizes the factorization of
the distribution. We consider a bipartite graph G = (V, F,E)
where E ⊂ V ×F , which can be obtained from an undirected
graph by replacing each clique by a node a ∈ F and the edges
(s, a) if and only if the variable Xi participates in the factor
a (see Figure 1.(c)). In this new representation, the random
variables Xi are associated to the vertices V and the factors
fa to the vertices F , and the factor fa is a function of the
neighboring variables Xi such that (i, a) ∈ E.

C. Applications

1) Decoding: One of the fundamental problems of infor-
mation theory consists in communicating reliably strings of
bits over a noisy channel. During the transmission, each bit
may be corrupted by the noise. One can reduce the loss by
adding redundancy and using error-correcting codes. When
designing the code ensembles (the redundancy), one particular
quantity of interest is the bit-error probability: it is the fraction
of bits that are on average incorrectly reconstructed. However
its computation requires inference on a glassy system which
is generically difficult.

In section II, we consider regular low-density parity-check
codes over a binary-symmetric channel in the decoding
regime. We prove that up to a certain noise threshold the
bit-error probability of the bit-sampling decoder converges
in mean to zero over the code ensemble and the channel
realizations. To arrive at this result we show that the bit-error
probability of the sampling decoder is equal to the derivative
of a Bethe free entropy. The method that we developed is new
and is based on convexity of the free entropy and loop calculus.
Convexity is needed to exchange limit and derivatives and the
loop series enables us to express the difference between the
bit-error probability and the Bethe free entropy. We control the
loop series using combinatorial techniques and a first moment
method. We stress that our method is versatile and we believe
that it can be generalized for LDPC codes with general degree
distributions and for asymmetric channels.

2) Learning spreading parameters: Given a directed graph
G = (E, V ), we consider an activation process on a
graph which follows the discrete-time Susceptible-Infected
(SI) model [4]. Each vertex can be in either two states: infected
(I) or susceptible (S). At every time-step, each infected node
can infect one of its susceptible neighbor with a probability
αij associated to the edge (i → j) ∈ E, while the infected
nodes remain infected:

I(i) + S(j)
αji−−→ I(i) + I(j)

I(i)→ I(i)



An important practical problem consists in reconstructing the
diffusion network from data: given a set of cascades - the set
of times at which the nodes got infected - on the same graph,
can we reconstruct the edges and the spreading parameters
αij? A number of recent papers introduced efficient algorithms
for this particular problem, based on the maximization of
the likelihood of observed cascades, assuming that the full
information for all the nodes in the network is available.

In section III, we focus on a more realistic scenario, in
which only a partial information on the cascades is available:
either the set of activation times for a limited number of
nodes, or the states of nodes for a subset of observation times,
or a mixture of both variants. To tackle this problem, we
first introduce a framework based on the maximization of the
likelihood of the incomplete diffusion trace. However, the eval-
uation of this incomplete likelihood is a computationally hard
problem, and we show that a fast and robust reconstruction of
transmission probabilities in sparse networks can be achieved
with a new algorithm based on recently introduced dynamic
message-passing equations for the spreading processes. The
suggested approach can be easily generalized for a large
class of discrete and continuous dynamic models, as well as
for the cases of dynamically-changing networks and noisy
information.

3) Learning Ising Model: An Ising Model on an undirected
graph G = (V,E) is defined by the pairwise coulings J =
{Jij}(i,j)∈E ∈ R|E| associated to each edge and magnetic
fields h = {hi}i∈V ∈ R|V |. A binary random variable Σi ∈
{−1,+1} (spin) is associated to each vertex i ∈ V . The joint
distribution of the spins is given by:

PJ,h(σ) =
1

Z(J)
exp

 ∑
(i,j)∈E

Jijσiσj +
∑
i∈V

hiσi

 (3)

We consider the following problem: given a collection
Σ(1), . . . ,Σ(M) of independent and identically distributed
samples drawn from an Ising Model {J, h}, reconstruct the
underlying graph G = (V,E). Due to its difficulty and its prac-
tical importance, the structure learning problem, also known
as inverse Ising model problem, has attracted considerable
attention in the past two decades. This year, a work by Guy
Bresler [5] has solved a long standing question: can we learn
efficiently models without decay of correlation? His greedy
algorithm manages to achieve the theoretical sample bound
for arbitrary bounded-degree graphs and a runtime of O(|V |2)
without any assumptions on the parameters. However his
algorithm, because of the prefactor, remains computationally
too expensive to be used in practice.

In section IV, we discuss an alternative approach based on
convex estimators which have the advantage to be generic and
tractable. We introduce an annealed estimator of “interactions
screening" and discuss its potential benefits compared to the
quenched pseudo-loglikelihood. We also suggest a new type
of regularization based on the spin-flip symmetry.

II. CONCENTRATION TO ZERO BIT-ERROR PROBABILITY
FOR REGULAR LDPC CODES ON THE BINARY SYMMETRIC

CHANNEL: PROOF BY LOOP CALCULUS

This work has been conducted with M. Vuffray and will be
published in the conference proceedings of the 53rd Annual
Allerton Conference on Communication, Control, and Com-
puting.

A. Introduction

In 1968 Gallager [6] introduced error-correcting codes based
on low-density parity-check (LDPC) matrices. Since then
LDPC codes have been proven to be of great practical and
theoretical relevance. LDPC codes perform very well under
iterative decoding on a broad class of symmetric memoryless
channels (BMS) [7], [8] and provably achieve capacity on
the binary erasure channel (BEC) [9]. Since 1996 they have
been integrated into many industrial standards from wireless
communications to computer chips.

An important performance measure of an LDPC code and its
associated decoder is the bit-error probability. It is the fraction
of bits that are on average incorrectly reconstructed. The
bit-error probability of LDPC codes under belief-propagation
(BP) decoding is well-understood on BMS channels using
the method of density evolution [10]. However it is a more
challenging task to control the bit-error probability of the bit
maximum a posteriori (MAP) decoder.

Lower and upper bounds on the noise threshold for van-
ishing bit-MAP error probability have already been derived
in Gallager’s thesis [6] for a class of BMS channels. These
bounds have been improved and generalized for every BMS
channels by Shamai and Sason [11].

In this paper we prove that for regular LDPC codes over
a BSC channel the “magnetization” or bit-error probability of
the bit-sampling decoder vanishes up to a certain threshold.
This result also shows that the posterior measure of LDPC
codes concentrates over the LDPC ensemble and the noise
realizations. To achieve this result we show that the magne-
tization is asymptotically equal to a perturbed version of the
Bethe free entropy. The technique that we present is new and
is based on loop calculus or loop series derived by Chertkov
and Chernyak [12]. The loop series expresses the difference
between a quantity and its Bethe counterpart as a sum over
subgraphs. Proving that the loop series vanishes tantamount to
control a purely combinatorial object that depends solely on
the LDPC graph ensemble. Suboptimal bounds on this object
are obtained using McKay’s estimates [13] following an idea
developed in [14], [15].

The technique that we present has the advantage to be
simple and versatile. To emphasize this point we also show
that our results can be easily transposed to the BEC. Moreover
we stress that our proofs do not rely explicitly on properties of
the channel. Hence we believe that this technique can be use
to analyze LDPC codes over channels that are not symmetric.

In Section II-B we give a precise definition of the bit-
sampling decoder and its associated bit-error probability and
we present our main theorems. In Section II-C we derive



the relation between the Bethe free entropy and the bit-error
probability and we express the difference using loop calculus.
In Section II-C we reduce the loop series to a counting problem
that we control with a first moment method. Finally we discuss
about future works and possible improvements in Section II-E.

B. Main Results

1) Regular LDPC codes on BMS channels: LDPC codes
are defined by a regular bipartite graph Γ = (V,C,E) where
V is the set of variable nodes, C the set of check nodes and
E = V × C the set of undirected edges. There are n = |V |
variable nodes and m = |C| check nodes.

We consider regular LDPC codes with variable-node de-
grees l ≥ 3 and check-node degrees r > l. The design rate of
the code is by definition Rdes = 1− l/r.

An LDPC code is generated randomly. The graph Γ is
drawn uniformly at random from the ensemble of (l, r) regular
bipartite graphs. Throughout the paper we write EΓ [·] the
expectation with respect to the ensemble of regular (l, r)
bipartite graphs with uniform probability.

Denote the neighbors of a variable node i ∈ V (resp. a
check node a ∈ C) by ∂i = {a ∈ C | (i, a) ∈ E} (resp. by
∂a = {i ∈ V | (i, a) ∈ E}). A codeword is a sequence1 σ =
{σi}ni=1 ∈ {−1, 1}n that satisfies the parity-check sum∏

i∈∂a

σi = 1, (4)

for all check nodes a ∈ C.
We transmit a codeword with uniform prior over a BMS

channel with transition probability q (si | σi), where the output
of the channel could take any real value si ∈ R . The
symmetry property of the channel is expressed through the
simple relation

q (si | σi) = q (−si | −σi) . (5)

We assume without loss of generality that the all-zero code-
word2 is transmitted. Hence the output of the channel s =
{si}ni=1 ∈ Rn is i.i.d. with distribution q (si | +1). The
posterior probability that the codeword σ is sent given that
s is transmitted reads

µΓ (σ | s) =
1

Z (Γ, s)

∏
a∈C

1

2

(
1 +

∏
i∈∂a

σi

)∏
i∈V

q (si | σi) ,

(6)
where the normalization factor Z (Γ, s) in Equation (6) is the
partition function

Z (Γ, s) :=
∑
σ

∏
a∈C

1

2

(
1 +

∏
i∈∂a

σi

)∏
i∈V

q (si | σi) . (7)

2) Concentration of the Bit-Error Probability for the Sam-
pling Decoder: We are interested in the performance of regular

1As we use concepts from statistical physics it is more convenient to employ
the binary alphabet {−1, 1} instead of the traditional {0, 1}.

2In the binary alphabet {−1, 1}, the all-zero codeword is the sequence
{1, . . . , 1}.

LDPC codes with respect to the average bit-error probability
of decoding. We consider the bit-sampling decoder

σ̂sampling
i (s) := sampleσi according to

∑
σ\σi

µ (σ | s) . (8)

The bit-error probability of the bit-sampling decoder is directly
related to the marginals of the posterior probability (6)

P bit-sampling
Γ :=

1

2

(
1− Es

[
1

n

n∑
i=1

〈σi〉|s

])
, (9)

where Es [·] denotes the expectation with respect to the channel
output distribution and 〈·〉|s denotes the average with respect to
the posterior probability (6). The expected quantity in Equation
(9) is sometimes referred as the averaged magnetization in the
physics community.

An important question is to know when the bit-error prob-
ability is vanishing in the limit where the codeword length
goes to infinity. In this paper we consider two families of
symmetric channels, the BEC and the BSC. The BEC has
an output alphabet si ∈ {−1, 0, 1} and is characterized by
transition probabilities

qBEC (1 | 1) = 1− ε, qBEC (0 | 1) = ε, qBEC (−1 | 1) = 0,
(10)

where ε ∈ [0, 1] is the erasure probability. The BSC has binary
outputs si ∈ {−1, 1} and is characterized by the transition
probabilities

qBSC (1 | 1) = 1− p, qBSC (−1 | 1) = p, (11)

where p ∈ [0, 1/2] is the flipping probability.
Before we state our theorems we need to introduce the

domain

D (ρ) =

(x0, xc, y
)
∈ [0, 1]

2+br/2c |
br/2c∑
t=1

yt ≤ 1,

br/2c∑
t=1

2t

r
yt = (1− ρ)x0 + ρxc

 . (12)

We also need to introduce the auxiliary function f : D (ρ)×
[0, 1]→ R defined as follows3

f
(
x0, xc, y, ρ

)
= −lh2 ((1− ρ)x0 + ρxc)

+ (1− ρ)h2 (x0) + ρh2 (xc)

− l

r

(
1−

r∑
t=1

yt

)
ln

(
1−

r∑
t=1

yt

)

− l

r

r∑
t=1

yt ln yt

+
l

r

br/2c∑
t=1

yt ln

(
r
2t

)
, (13)

3The binary entropy h2 (p) := − (1− p) ln (1− p)− p ln p is computed
in nat.



and the function k : [0, 1]
4 → R that reads

k (x0, xc, ρ, p) = (ρxc − (1− ρ)x0) ln

(
1− p
p

)
. (14)

Our main contribution are the two theorems stated below
which give sufficient conditions on the channel parameters
for concentration of the bit-error probability of the sampling
decoder.

Theorem 1 (Concentration of the Bit-Error Probability for
BEC). Consider the ensemble of (l, r) regular LDPC codes
on a BEC with erasure probability ε. If the following function
achieves its maximum only at the point

argmax
(0,xc,y)∈D(ε)

f
(
0, xc, y, ε

)
= {(0, 0, 0)} ,

then the bit-error probability of the sampling decoder con-
verges in mean to zero in the large codeword limit

lim
n→∞

EΓ,s

[
P bit-sampling

Γ

]
= 0.

The same theorem holds for the BSC with a similar condi-
tion.

Theorem 2 (Concentration of the Bit-Error Probability for
BSC). Consider the ensemble of (l, r) regular LDPC codes
on a BSC with flipping probability p. If the following function
achieves its maximum only at the point

argmax
(x0,xc,y)∈D(p)

f
(
x0, xc, y, p

)
+ k (x0, xc, p, p) = {(0, 0, 0)} ,

then the bit-error probability of the sampling decoder con-
verges in mean to zero in the large codeword limit

lim
n→∞

EΓ,s

[
P bit-sampling

Γ

]
= 0.

Remark 3. Knowing that P bit-sampling
Γ vanishes implies that

with high probability the posterior measure (6) concentrates
on configurations that are at a Hamming distance o (n) from
the all-zero codeword.

We perform the global optimization numerically and we find
for a few cases the maximum value of noise εloop and ploop for
which Theorem 1 and Theorem 2 hold. The critical values of
noise are displayed in Table I for the BEC and in Table II for
the BSC.

l r Rdes εBP εloop εMAP εSh

3 4 1/4 0.64743 0.7442(9) 0.74601 0.75
3 5 2/5 0.51757 0.5872(4) 0.59098 0.6
3 6 1/2 0.42944 0.4833(6) 0.48815 0.5
4 6 1/3 0.50613 0.5767(2) 0.66565 0.66667

TABLE I
THRESHOLDS FOR SOME REGULAR LDPC CODE ENSEMBLES OVER THE

BEC WITH ERASURE PROBABILITY ε. THE BELIEF-PROPAGATION
THRESHOLD IS εBP , THE MAXIMUM A POSTERIORI THRESHOLD IS εMAP ,

THE SHANNON THRESHOLD IS εSH AND OUR THRESHOLD IS εLOOP .
VALUES OF BP AND MAP THRESHOLDS ARE FROM [16].

l r Rdes pBP ploop pMAP pSh

3 4 1/4 0.1669(2) 0.2014(2) 0.2101(1) 0.21450
3 5 2/5 0.1138(2) 0.1146(8) 0.1384(1) 0.14610
3 6 1/2 0.0840(2) 0.0678(9) 0.1010(1) 0.11003
4 6 1/3 0.1169(2) 0.1705(2) 0.1726(1) 0.17395

TABLE II
THRESHOLDS FOR SOME REGULAR LDPC CODE ENSEMBLES OVER THE

BSC WITH ERASURE PROBABILITY p. THE BELIEF-PROPAGATION
THRESHOLD IS pBP , THE MAXIMUM A POSTERIORI THRESHOLD IS pMAP ,

THE SHANNON THRESHOLD IS pSH AND OUR THRESHOLD IS pLOOP .
VALUES OF BP AND MAP THRESHOLDS ARE FROM [16].

We would expect that for LDPC codes the probability of
error vanishes for ε < εMAP and p < pMAP. Although the
thresholds that we found are reasonably close to εMAP and
pMAP for graphs with small degrees, they become worse in
the limit of large degrees. A quick inspection of (13) and (14)
shows that the functions f/l and k/l become independent of
the noise parameter in the limit where l and r go to infinity
with a fixed ratio l/r. It implies that ploop and εloop vanish. This
behavior is in the opposite direction to what we can expect as
in the limit of large degrees pMAP → pSh. In Section II-E we
discuss about possible improvements in our analysis in order
to make our thresholds tight.

The rest of the paper is organized as follows. In Sec-
tion II-C we show that the bit-error probability is related to
the derivative of the so-called free entropy. Using the loop
series, we express the free entropy as a combinatorial sum
over subgraphs. In Section II-D we control the loop series with
asymptotic estimates on subgraphs and Laplace’s method. We
prove Theorems 1 and 2 in this section. In Section II-E we
discuss future directions and ways to improve and generalize
our results.

C. Free Entropy, Bethe Approximation and Loop Series

1) The Free Entropy and its Relation to the Bit-Error
Probability: The bit-error probability (9) is related to a
“perturbed” version of the partition function (7). Let η ∈ R be
the perturbation parameter entering in the perturbed partition
function

Z (Γ, s, η) :=
∑
σ

∏
a∈C

1

2

(
1 +

∏
i∈∂a

σi

)∏
i∈V

q (si | σi) eη(σi−1).

(15)
Note that Z (Γ, s, η) is a non-increasing function of η and
Z (Γ, s, 0) is the original partition function (7).

The free entropy is the (normalized) logarithm of the
partition function (15)

φ (Γ, s, η) :=
1

n
lnZ (Γ, s, η) . (16)

A direct computation shows that the derivative of the free
entropy with respect to its perturbation parameter reads

∂

∂η
φ (Γ, s, η)

∣∣∣∣
η=0

=
1

n

n∑
i=1

〈σi〉s − 1. (17)



Therefore the bit-error probability is related to the average
entropy through the following relation

∂

∂η
Es [φ (Γ, s, η)]

∣∣∣∣
η=0

= −2P bit-sampling
Γ . (18)

Since Z (Γ, s, η) is a non-increasing function of η, the free
entropy is non-increasing as well. Moreover the free entropy
is a convex function of η as it can easily be verified by taking
twice the derivative with respect to η. It implies that in order to
show concentration of the bit-error probability it is sufficient
to prove that there exists η̃ < 0 independent of n such that
EΓ,s [φ (Γ, s, η̃)]→ 0. If this condition is true then, thanks to
monotonicity, the limit is also equal to zero for all η ∈ [η̃,∞[.
Finally convexity of the free entropy enables us to exchange
limit and derivative (see [17, p. 203]).

In order to prove that the free entropy vanishes we decom-
pose it into two contributions: the Bethe free entropy that can
be computed explicitly and the so-called loop series that is
a sum over subgraphs of Γ. Using a first moment method
and combinatorial tools from graph theory, we show that with
high probability the loop series vanishes in the large codeword
limit. The last statement implies that the free entropy is equal
to the Bethe free entropy.

2) The Bethe Approximation : The Bethe free entropy is
an approximation of the free entropy (16). It is defined as
a functional over “messages” that are probability distributions
νi→a (σi), ν̂a→i (σi) associated with the directed edges i→ a,
a→ i of the graph. The messages satisfy the so-called belief-
propagation (BP) equations. For the free entropy (16) the BP
equations take the following form

ν̂a→i (σi) ∝
∑

σ∂a\σi

1

2

(
1 +

∏
i∈∂a

σi

) ∏
j∈∂a\i

νj→a (σi)

νi→a (σi) ∝ eη(σi−1)q (si | σi)
∏

b∈∂i\a

ν̂b→i (σi) , (19)

where the symbol ∝ denotes equality up to a normalization
factor.

The Bethe free entropy evaluated at a fixed point of the
BP equations is a sum of local contributions from nodes and
edges of the graph Γ = (V,C,E)

φBethe
(ν,ν̂) (Γ, s, η) :=

1

n

∑
a∈C

Fa+
1

n

∑
i∈V

Fi−
1

n

∑
(i,a)∈E

Fia, (20)

where

Fa = ln

∑
σ∂a

1

2

(
1 +

∏
i∈∂a

σi

) ∏
j∈∂a

νj→a (σi)


Fi = ln

(∑
σi

eη(σi−1)q (si | σi)
∏
b∈∂i

ν̂b→i (σi)

)

Fia = ln

(∑
σi

νi→a (σi) ν̂a→i (σi)

)
. (21)

Note that once a fixed-point of the BP equations (19) is found,

computing the Bethe free entropy (20) is a computationally
easy task.

3) Corrections to the Bethe Free Entropy: the Loop Series:
The difference between the free entropy and the Bethe free
entropy can be expressed with the so-called loop series derived
by Chertkov and Chernyak [12]. It takes the form of the
logarithm of a weighted sum over subgraphs of Γ. These
subgraphs are called “loops” for they have no dangling edges.
Note that if Γ is a tree no such subgraph exists and we
recover the well-known result that the Bethe free entropy is
exact on trees. We recall that a subgraph g = (Vg, Cg, Eg) of
Γ = (V,C,E) is any graph with vertex set Vg ⊂ V , factor
node set Cg ⊂ C and edge set Eg ⊂ (Vg × Cg) ∩ E. For
simplicity we denote the relation “g is a subgraph of Γ” with
the inclusion symbol g ⊂ Γ. We also denote the induced
neighborhood in g of a variable node i ∈ Vg (resp. check
node a ∈ Cg) by ∂gi = ∂i ∩ Vg (resp. by ∂ga = ∂a ∩ Cg).
The set of “loops” consists of any non-empty subgraphs, not
necessarily connected, with no degree one variable-node and
no degree one check-node

LΓ := {g ⊂ Γ | ∀i ∈ Vg, |∂gi| ≥ 2 and ∀a ∈ Cg, |∂ga| ≥ 2} .
(22)

The difference between the free entropy and the Bethe free
entropy is related to the loop series through the following
equation

φ (Γ, s, η)− φBethe
(ν,ν̂) (Γ, s, η) =

1

n
ln
(
Z loop

(ν,ν̂)

)
, (23)

where the argument of the logarithm is a weighted sum over
loops

Z loop
(ν,ν̂) := 1 +

∑
g∈LΓ

K(ν,ν̂) (g) . (24)

The weight function over loops depends on the BP fixed
point at which the Bethe free entropy is evaluated and can
be expressed as a product over the nodes inside a loop

K(ν,ν̂) (g) :=
∏
i∈Vg

κi
∏
a∈Cg

κa. (25)

The factors κi and κa entering in (25) depend only on
messages that are associated with edges neighboring the nodes
i ∈ Vg and a ∈ Cg

κi :=

(∑
σi

q (si | σi) eη(σi−1)
∏
a∈∂i

ν̂a→i (σi)

)−1

×

∑
σi

q (si | σi) eη(σi−1)
∏

a∈∂i\∂gi

ν̂a→i (σi)

×
∏
a∈∂gi

σiνi→a (−σi)

 , (26)



and

κa :=

∑
σ∂a

(
1 +

∏
i∈∂a

σi

) ∏
i∈∂a

νi→a (σi)

−1

×

∑
σ∂a

(
1 +

∏
i∈∂a

σi

) ∏
i∈∂a\∂ga

νi→a (σi)

×
∏
i∈∂ga

σiν̂a→i (−σi)

 . (27)

For a complete derivation of the loop series for graphical
models associated with linear codes, we refer the reader to
[18].

4) The Decoding Regime and its BP Fixed-Point: Note
that the loop series, as well as the Bethe free entropy, are
functions of fixed-points of the BP equations (19). The fixed-
point associated with the decoding regime is the ferromagnetic
fixed-point

ν̂+
a→i (σi) = ν+

i→a (σi) =
1 + σi

2
. (28)

One can easily see that ferromagnetic messages (28) satisfy
the BP equations (19) regardless of the channel considered
and of the value of the perturbation parameter η ∈ R. The
ferromagnetic fixed-point (28) describes a state for which the
most likely configuration is the all-zero codeword i.e. σi =
+1. This is the reason why this fixed-point is associated with
the decoding regime.

The Bethe free entropy (20) evaluated at the ferromagnetic
fixed-point simply reads

φBethe
+ (Γ, s, η) =

1

n

∑
i∈V

ln (q (si | +1)) . (29)

The factors entering in the weight function (25) are computed
using Equations (27) for check nodes

κa =

{
1 |∂ga| is even
0 |∂ga| is odd

, (30)

and Equation (26) for variable nodes

κi =

{
(−1)

l
e−2(λ(si)+η) |∂gi| = l

0 |∂gi| < l
, (31)

where in the last expression we have used the half log-
likelihood variables

λ (si) :=
1

2
ln
q (si | +1)

q (si | −1)
. (32)

Based on the expression of the factors (30) and (31), the only
subgraphs with a non-zero weight are those with an induced
variable-node degree equal to l and even induced check-node
degree. This motivates the definition of the ferromagnetic

loops ensemble

L+
Γ = {g ∈ LΓ | ∀i, a ∈ g, |∂gi| = l and |∂ga| is even} .

(33)
A loop that is not an element of the ferromagnetic ensemble
has a zero weight. Moreover the weight of a ferromagnetic
loop is always non-negative

K+ (g) = exp

−2η |Vg| − 2
∑
i∈Vg

λ (si)

 ≥ 0. (34)

In order to see that K+ (g) is non-negative, notice that a sign
is only associated with the factors κi and is equal to (−1)

l.
Therefore a loop can only have a negative weight if the product
l |Vg| is odd. Note that this product is the number of edges in
a loop counted from the variable-node perspective. Therefore
it should be equal to the number of edges counted from the
check-node perspective

l |Vg| =
∑
a∈Cg

|∂ga| . (35)

Since for a ferromagnetic loop |∂ga| is always even, l |Vg| is
also even and the weight of a loop is always non-negative.

Using Equations (23) and (29) we can express the average
free entropy (16) in the simple form

EΓ,s [φ (Γ, s, η)] = EΓ,s

 1

n
ln

1 +
∑
g∈L+

Γ

K+ (g)


+

∫
dsq (s | 1) ln (q (s | 1)) . (36)

Note that Equation (36) is valid for all BMS channels regard-
less of the noise parameter. However we can only expect that
the ferromagnetic loop-series vanishes in the decoding regime.

D. First Moment Method on the Loop Series

We use a first moment method to prove that the ferro-
magnetic loop-series in Equation (36) vanishes. In our case
it is based on Jensen’s inequality and consists of permuting
the expectation over the graph ensemble and the logarithm in
Equation (36).

Note that we cannot permute the expectation over the
channel output realizations and the logarithm. It is easy to see
that over the channel output realizations a loop has an expected
weight (34) that increases exponentially fast for η < 0

Es [K+ (g)] = e−η|Vg|. (37)

This is because the loop series is dominated by events for
which most of the bits are corrupted and have negative half
log-likelihood (32). These events are rare but give rise to an
exponentially large weight.

Therefore we estimate the expectation of the loop series
over the ensemble of regular (l, r) bipartite graphs for a fixed
output realization of the channel.



1) Probability Estimates on Graphs: For a given channel
realization s of the BEC (resp. BSC) call Vc the set of variable
nodes with si = 0 (resp. si = −1) and call V0 the set of
variable nodes i ∈ V with si = 1 (resp. si = 1). The set
V0 contains bits that have been correctly transmitted and Vc
contains bits that have been corrupted. We denote the fraction
of correctly transmitted bits by (1− ρ) = |V0| /n and we
denote the fraction of corrupted bits by ρ = |Vc| /n. We recall
that the total number of variable nodes is n = |V | and the
total number of check nodes is m = |C|.

We decompose the set of ferromagnetic loops (33) into
subsets of loops having the same “type”. The type of a
loop g ∈ L+

Γ is the triplet
(
x0, xc, y

)
∈ [0, 1]

2×br/2c where
x0 = |V0 ∩ Vg| /n is the fraction of correctly transmitted
variable nodes in the loop, xc = |Vc ∩ Vg| /n is the fraction
of corrupted variable nodes in the loop and y = {yt}br/2ct=1 is
the fraction of check nodes with degree 2t. The set of loops
of type

(
x0, xc, y

)
is denoted by Ω

(
x0, xc, y

)
.

Not all value of
(
x0, xc, y

)
are admissible loop types. The

fraction of check nodes inside a loop is upper bounded by 1.
Moreover counting edges from the variable-node perspective
or from the check-node perspective obviously gives the same
number. Therefore types that are admissible belong to the
following set already introduced in Section II-B, Eq. (12)

D (ρ) =

(x0, xc, y
)
∈ [0, 1]

2+br/2c |
br/2c∑
t=1

yt ≤ 1,

br/2c∑
t=1

2t

r
yt = (1− ρ)x0 + ρxc

 . (38)

The weight (34) of a loop g ∈ Ω
(
x0, xc, y

)
is only a

function of its type K+ (g) ≡ K+ (x0, xc). Using the specific
expression of the half log-likelihood (32) for each channels
we find the explicit form of the weight function for the BEC

KBEC
+ (x0, xc) =

{
exp (−2nηxcρ) x0 = 0

0 x0 > 0
, (39)

and for the BSC

KBSC
+ (x0, xc) = exp (−2nη (x0 (1− ρ) + xcρ)

+nk (x0, xc, ρ, p)) , (40)

where k (x0, xc, ρ, p) is the auxiliary function introduced in
Section II-B, Eq. (14)

k (x0, xc, ρ, p) = (ρxc − (1− ρ)x0) ln

(
1− p
p

)
. (41)

Therefore the expected value of the loop series over the graph
ensemble can be expressed only through loop types

EΓ

∑
g∈L+

Γ

K+ (g)

 =
∑

(x0,xc,y)∈D(ρ)

K+ (x0, xc)

× EΓ

[∣∣Ω (x0, xc, y
)∣∣] . (42)

The expected number of loops with prescribed type(
x0, xc, y

)
is upper bounded using McKay’s combinatorial

estimate4 [13] for subgraphs with specified degrees

EΓ

[∣∣Ω (x0, xc, y
)∣∣] ≤ nδl,r

(
nl

nl (x0 (1− ρ) + xcρ)

)−1

×
(

n (1− ρ)
nx0 (1− ρ)

)(
nρ
nxcρ

)
×

(
m

my1, . . . ,mybr/2c

)
×

br/2c∏
t=1

(
r
2t

)myt
, (43)

where δl,r is a constant that depends only on l and r. McKay’s
estimate has the advantage to have an asymptotically tight
growth rate when n goes to infinity.

It remains to prove that the average loop series (42) with
the bound (43) vanishes in the large n limit.

2) Laplace’s Method and Proof of Theorems: The loop
series (42) is dominated by loop types that contribute to the
sum with the biggest exponential growth. We apply Laplace’s
method in order to characterize the biggest exponent.

Using Stirling inequalities

e
1

12n+1 ≤ n!√
2πne−nnn

≤ e 1
12n , (44)

we find an asymptotically tight upper bound on the estimate
(43)

EΓ

[∣∣Ω (x0, xc, y
)∣∣] ≤ Cl,rnδ′l,r exp

(
nf
(
x0, xc, y, ρ

))
,
(45)

where Cl,r and δ′l,r are just numerical constants and
f
(
x0, xc, y, ρ

)
is the auxiliary function introduced in Section

II-B, Eq. (4)

f
(
x0, xc, y, ρ

)
= −lh2 ((1− ρ)x0 + ρxc)

+ (1− ρ)h2 (x0) + ρh2 (xc)

− l

r

(
1−

r∑
t=1

yt

)
ln

(
1−

r∑
t=1

yt

)

− l

r

r∑
t=1

yt ln yt

+
l

r

br/2c∑
t=1

yt ln

(
r
2t

)
. (46)

Combining Equations (39), (40) and (45), we show that the
leading exponent in Equation (42) is for the BEC

αBEC (ρ, η) = max
(0,xc,y)∈D(ρ)

f
(
0, xc, y, ρ

)
− 2ηxcρ, (47)

4McKay’s bound in its original form is only applicable for subgraphs of
size less than n− 4r2. We refer to [14] for a careful analysis.



and for the BSC

αBSC (ρ, η) = max
(x0,xc,y)∈D(ρ)

(−2η (x0 (1− ρ) + xcρ)

+ f
(
x0, xc, y, ρ

)
+ k (x0, xc, ρ, p)

)
. (48)

Notice that for all ρ and η the exponent αBEC/BSC (ρ, η) is non-
negative. This is easily verified by evaluating the objective
function at

(
x0, xc, y

)
= (0, 0, 0). Therefore the bit-error

probability vanishes if αBEC/BSC (ρ, η) is equal to zero for all
η in a neighborhood of zero. The next Lemma shows that in
fact only the maximization at η = 0 is important.

Lemma 4. If the maximum of (47) (resp. (48)) is uniquely
achieved in

(
x0, xc, y

)
= (0, 0, 0) for η = 0, then there exists

η̃ < 0 such that αBEC (ρ, η) = 0 (resp. αBSC (ρ, η) = 0) for all
η ∈ ]η̃,∞[.

Proof: See Appendix A-A
In order to prove Theorems 1 and 2, we need to show

that small variations around ρ do not change αBEC (ρ, 0) and
αBSC (ρ, 0). This is guaranteed by the following Lemma.

Lemma 5. For all ρ ∈ [0, 1], if αBEC (ρ, 0) = 0 (resp.
αBSC (ρ, 0) = 0) and the maximum of (47) (resp. (48)) is
uniquely achieved at

(
x0, xc, y

)
= (0, 0, 0), there exists N

sufficiently large such that

∀n ≥ N, ∀δ ∈

[
−
√

lnn

n
,

√
lnn

n

]
, αBEC/BSC (ρ+ δ, 0) = 0

Proof: See Appendix A-B
We are now in position to prove our main theorems.

Proof of Theorem 1:
Let ε be the probability of error of the BEC. First notice that

the perturbed partition function (15) is trivially lower bounded
by 1 and upper bounded by 2ne2n|η|. This implies that the free
entropy (16) remains finite

0 ≤ φ (Γ, s, η) ≤ ln 2 + 2 |η| . (49)

Therefore using Equation (36) and the fact that K+ (g) ≥ 0
we see that the loop series remains finite as well

2 (ln 2 + |η|) ≥
∣∣∣∣Es [φ (Γ, s, η)]−

∫
dsq (s | 1) ln (q (s | 1))

∣∣∣∣
= Es

 1

n
ln

1 +
∑
g∈L+

Γ

K+ (g)

 . (50)

Let A be the following probabilistic event on the channel
output realizations

A :=

{
s ∈ {−1, 0, 1}n |

∣∣∣∣∣ 1n
n∑
i=1

si − (1− ε)

∣∣∣∣∣ ≤
√

lnn

n

}
.

(51)
Output realizations in A are close to the average output
realization.

Using Hoeffding’s inequality, we see that the probability of

the complementary event Ac vanishes

Ps [Ac] ≤ 2

n−2
. (52)

Combining Jensen’s inequality and the trivial bound (50) on
the loop series we have the following estimate

EΓ,s

 1

n
ln

1 +
∑
g∈L+

Γ

K+ (g)

 ≤ 4

n−2
(ln 2 + |η|)

+Es

 1

n
ln

1 + EΓ

∑
g∈L+

Γ

K+ (g)

 | A
 . (53)

Since we have conditioned over channel output realizations
that are in A, the fraction of corrupted bit is |ρ− ε| ≤√

lnn/n. Therefore combining Equation (45), Lemma 4 and
Lemma 5 we have that if αBEC (ε, 0) = 0 is uniquely achieved
in
(
x0, xc, y

)
= (0, 0, 0) then for all η ∈ ]η̃,∞[ and n

sufficiently large,

Es

 1

n
ln

1 + EΓ

∑
g∈L+

Γ

K+ (g)

 | A
 ≤

1

n
ln (1 + c3n

c4) , (54)

where c3 and c4 are numerical constants independent of n.

We have proved that for all η ∈ ]η̃,∞[ with η̃ < 0 the
average free entropy converges in expectation over the regular
(l, r) LDPC ensemble

lim
n→∞

EΓ

[∣∣∣∣Es [φ (Γ, s, η)]−
∫
dsq (s | 1) ln (q (s | 1))

∣∣∣∣] = 0.

(55)
In particular it implies that the average free entropy over the
LDPC ensemble converges

lim
n→∞

EΓ,s [φ (Γ, s, η)] =

∫
dsq (s | 1) ln (q (s | 1)) . (56)

Since EΓ,s [φ (Γ, s, η)] is a convex function of η and converges
pointwise in a neighborhood of zero, we can exchange the limit
and the derivative

0 =
∂

∂η
lim
n→∞

EΓ,s [φ (Γ, s, η)]

∣∣∣∣
η=0

= lim
n→∞

∂

∂η
EΓ,s [φ (Γ, s, η)]

∣∣∣∣
η=0

= lim
n→∞

EΓ

[
∂

∂η
Es [φ (Γ, s, η)]

]∣∣∣∣
η=0

= −2 lim
n→∞

EΓ

[
P bit-sampling

Γ

]
, (57)

where in the last line we use Equation (18) that relates the
free entropy to the bit-error probability.

Theorem 2 has a proof almost identical to that of Theorem 1.



E. Path Forward
We would like to stress that the techniques developed in

this paper are quite general. In particular they do not rely on a
special form of channels or on the regular-degree distribution
of the LDPC ensemble. Therefore we plan to improve our
results in the following ways.

1) Generalization to Arbitrary Degree Distributions: The
entire analysis can easily be extended to general degree
distributions with bounded degrees. It will simply transform
the function (46) that counts subgraphs into a more convoluted
object. However extending our results to distributions with
unbounded degrees, like for instance Poisson distributions,
may be more complicated. One would have to derive an
estimate for counting subgraphs in this particular case.

2) Asymmetric Channels: The loop series and the Bethe
free entropy for general channels are almost exactly similar
than for symmetric channels. For general channels we can
no longer assume that the all-zero codeword is transmitted.
Instead we have to average the bit-error probability over all
possible input codewords τ . In this case the weight of a loop
remains similar than for symmetric channels. The weight is
also non-negative and depends on the generalized half log-
likelihood ratio

λ (si | τi) =
1

2
log

q (si | τi)
q (si | −τi)

, (58)

where s denotes as usual the channel observations. In order to
control the loop series, we will need to perform a conditioned
expectation in (53) over joint typical sequences of input
codewords and noise realizations.

3) Tight Thresholds: As described in Section II-B, the
thresholds that we obtain are not tight. In fact at fixed rate they
become worse and converge to zero as the degrees of the graph
become large. The reason why we obtain such loose bounds for
large degrees comes from the function f

(
x0, xc, y, ρ

)
defined

in (46). This function counts the growing rate of the average
number of subgraphs with a prescribed type

(
x0, xc, y

)
f = lim

n→∞

1

n
ln
(
EΓ

[∣∣Ω (x0, xc, y
)∣∣]) . (59)

One can verify that if instead of f we use the function

f̃ = lim
n→∞

1

n
EΓ

[
ln
(∣∣Ω (x0, xc, y

)∣∣)] , (60)

we obtain tight lower and upper bound on the threshold for
vanishing bit-error probability.

The function f̃ only depends on the random graph ensem-
bles that we consider and does not depend on a particular
channel. Computing this function would provide a proof of
the exact location of the MAP threshold for an extensive class
of channels. However this computation could prove to be a
very difficult task.

A way around the problem of computing (60) is to condition
the expectation (59) on some rare events with respect to the
random graph measure. Note that by Jensen’s inequality f̃ is
always upper-bounded by f . This is because the expectation
(59) is dominated by rare events that are associated with a

large weight
∣∣Ω (x0, xc, y

)∣∣. Conditioning on these rare events
will lead to better estimates of (60) and will provide tighter
bounds at least in the limit of large degrees.

III. EFFICIENT RECONSTRUCTION OF TRANSMISSION
PROBABILITIES IN A SPREADING PROCESS FROM PARTIAL

OBSERVATIONS

This work has been conducted with A. Lokhov and will
be presented at the Conference on Complex Systems 2015
(CSS’15).

A. Introduction

Learning an underlying graphical model from observed
data is a long-standing and important practical problem in
statistical physics, machine learning and computer science.
Recent years have seen a renewed interest in development of
fast and efficient algorithms to carry out this reconstruction
problem in diverse contexts, such as gene regulatory networks
[19], biopolymers’ structure determination [20], neuroscience
[21] and sociology [22], using the analysis of large datasets
which have become available in these fields. An ongoing effort
of scientific community has allowed to develop a number
of techniques for solving the inverse problem for simple,
bud widely applicable models, such as the Ising model in a
static [23], [24] and dynamic [25], [26] settings. However, the
inference of the parameters in a large class of other models
of diffusion type has been less studied so far. Among a broad
range of disordered and out-of-equilibrium dynamic models,
a particular attention is devoted to cascading processes which
are used for modelling phenomena in a large number of
domains: epidemic and rumor spreading [27], [28], spread-
ing of information and innovations in real-world and virtual
social networks [29], [30], avalanches in magnetic and glassy
systems [31], activation cascades in neural networks [32], etc.

Contrary to the case of recurrent models, in which the
network reconstruction can be achieved with observing one
realization of dynamics of sufficient duration [33], [34],
learning in the case of cascades with unidirectional (also
called progressive) dynamics requires a certain number of
independent avalanches with different initial conditions. Given
a subset of activation times for several realizations of the
spreading process, the reconstruction problem aims to infer
the spreading parameters of the model. In the Bayesian frame-
work, a common inference method relies on the maximization
of likelihood of observed information. In the case of fully
observed cascades, this approach has been indeed suggested
in a number of recent papers [35], [36], [37], leading to
distributed convex optimization algorithms and outperform-
ing previously suggested ones. However, in the majority of
realistic applications, it is very difficult or even practically
impossible to monitor the state of each and every node over
the whole duration of the diffusion process; hence a need to
develop reconstruction algorithms which would be able to infer
the parameters of the model in the presence of hidden nodes or
incomplete time information on the cascades, as well as being
robust with respect to the noise in the observations. Despite the



importance of this problem, the case of incomplete information
has been very poorly addressed so far. In the context of kinetic
Ising model, the corresponding learning problem has been
studied in [38], where a trace over the configurations of the
hidden nodes in the likelihood function is performed using the
saddle-point approximation in the path-integral approach and
the mean-field methods. In the studies of cascading processes,
the work [39] addressed the network learning problem in
the case where the possibly noisy observations are recorded
at a frequency lower than the one inherent to the dynamic
process by using relaxation optimization techniques. Finally,
the presence of hidden nodes has been considered in [40] for
a different problem of identification of the diffusion source,
where the computation of the incomplete likelihood leads to
a difficult high-dimensional integration problem.

In this Letter, we develop a systematic framework for
parameters estimation in a spreading model from incomplete
observations. As a first natural step in solving this problem, we
introduce two algorithms based on the maximum likelihood
estimator (MLE) of incomplete information. However, both
schemes require an exponentially large number of operations
for an exact solution, which represents an important limitation
of the algorithms and makes their use impossible in the
cases where a fast online learning is desired. In practice, we
approximate the objective function in the second scheme by
using a Monte-Carlo sampling which speeds up the algorithm
but still requires to process all the data at each step. As an
alternative which would allow to considerably improve the
computation time, we develop a new algorithm based on re-
cently introduced dynamic message-passing (DMP) equations
for the spreading processes [41]. These equations allow for
an asymptotically exact computation of marginal probabilities
of nodes’ activation on loopy-but-sparse networks, and can
be used as an approximate tool for computationally hard
problems: recently, DMP equations have been applied to the
problem of inference of epidemic origin from a given (possible
incomplete) snapshot of the epidemic at a certain time [42].

B. Learning parameters from partial observations with max-
imum likelihood

1) Formulation of the problem: Let G ≡ (V,E) be a
connected undirected graph containing N nodes defined by
the set of vertices V and the set of edges E. We observe M
realizations of cascades c, where each sample Σc represents a
set of activation times for the nodes in the network {τ ci }i∈V .
However, some information on the cascades can be missing:
the full information can be written as Σ = ΣO ∪ ΣH, where
ΣO is the observed part of the cascades, and ΣH represents
the hidden part. For the sake of simplicity and definiteness,
we assume that the activation process follows a discrete-time
susceptible-infected (SI) model, which is defined as follows
[28]: each node i at time t ∈ [0, T ] can be in one of two
states qi(t): susceptible, qi(t) = S, or infected, qi(t) = I . At
each time step, an infected node j can transmit the information
to one of its susceptible neighbors i on the interaction graph
G with probability αji, meaning that i changes its state with

a probability Pt(S(i)→ I(i)) = 1−
∏
k∈∂i(1−αki1[qk(t) =

I]), where ∂i denotes the set of neighbors of i; once the node
is activated, it stays in the infected state forever. Note that the
reconstruction problem can be straightforwardly generalized
to models with more complicated transition rules, such as
SIR model, threshold and rumor spreading models, and even
models with recurrent dynamics. The cascades are simulated
with the following initial condition: each node is indepen-
dently drawn as infected with probability 1/N , meaning that
on average there is one “patient zero” at initial time; note,
however, that it also means that some cascades have several
initial sources, while other cascades are trivial and do not
contain any infected nodes.

Our goal is to reconstruct the values of the couplings
{αij}(ij)∈E ≡ Gα. In the absence of any prior on the
underlying model, the Bayes theorem states that

Gα = arg maxP (Gα | ΣO) ∝ arg maxP (ΣO | Gα), (61)

where ΣO ≡ {ΣcO}c∈[1,M ]. Hence, the task is to estimate
efficiently the likelihood function P (ΣO | Gα). Note that
the formulation (61) is valid for the case where the structure
of the graph is unknown (since we can view a network
as a fully-connected graph with some couplings equal to
zero). However, in what follows and unless stated otherwise,
we assume that the network G is known; treating the case
of unknown graph with missing information would require
some additional assumptions and constraints on the network
structure. For the tests involving incomplete observations, we
focus for definiteness and without loss of generality on the
presence of nodes with hidden information, providing the
study of other cases in the Supplementary Information [43]
(see the noisy case in Appendix B-C).

2) Maximum likelihood estimator: If the information on all
the nodes is available (Σ = ΣO), an efficient strategy would be
to use a consistent maximum likelihood estimator, suggested in
[36]. In the discrete formulation, the likelihood of the cascades,
P (Σ | Gα), is given by:

P (Σ | Gα) =
∏
i∈V

∏
1≤c≤M

Pi(τ
c
i | Σc\τ ci , Gα), (62)

where

Pi(τ
c
i | Σ\τ ci , Gα) =

τci −2∏
t′=0

∏
k∈∂i

(1− αki1[τ ck ≤ t′])


×

[
1−

(∏
k∈∂i

(1− αki1[τ ck ≤ τ ci − 1])

)
1[τ ci < T ]

]
. (63)

The estimation of the transmission probabilities Ĝα is given
by the solution of the following optimization problem:

Ĝα = arg min (− logP (Σ | Gα)) , (64)

which is convex, and can be solved locally for each node i
and its neighborhood due to the factorization of the likelihood
under assumption of asymmetry of the couplings. In the case
of partial observations, we need to consider the reduced MLE,



performing a trace over the hidden nodes:

P (ΣO | Gα) =
∑
{τi}i∈H

P (Σ | Gα). (65)

An exact evaluation of (65) is a computationally difficult high-
dimensional problem with complexity proportional to TH ,
where H is the number of hidden nodes. The integration can
be generically approximated by sampling the phase space:
an efficient importance sampling was suggested in [40], to
evaluate (65). However, in our case, the total likelihood is
dominated by the cascades with a small likelihood, which are
difficult to sample. Furthermore, the problem is very unstable
with respect to the sampling error, and in practice one need an
exact integration, which leads to an algorithm with complexity
O(NMTH) at each step of optimization procedure; see [43]
for more details.

3) Heuristic two-stage algorithm: In order to avoid the
exponential complexity in H and to keep the nice convexity
properties of the full MLE, we introduce a modification of
the scheme above which we also use as a benchmark (this
algorithm will be referred to as HTS algorithm). The idea
is to use two alternating stages at each step of optimization.
First, we complete the missing information in the cascades ΣH
using the current estimation of the couplings Ĝα, i.e. update
the activation times of the hidden variables as follows:

Σ̂H = arg maxP (Σ | Ĝα). (66)

We approximate the inference problem (66) with a Monte-
Carlo importance sampling: the hidden times are sampled by
simulating cascades with the current guess of variables and
starting from the known sources. Second, we can solve a
convex optimization problem (64) using the full Σ = ΣO∪Σ̂H,
thus obtaining a new estimation of Ĝα; the procedure is
repeated until convergence. In order to solve exactly the first
step, one need an exponential in H number of samples.
However we see that a much smaller number of samples is
needed in practice and the scheme converges in a small number
of steps. The complexity of one iteration step of this algorithm
is O(NMLH,T ) [43].

C. Dynamic message-passing algorithm:

A way to quantify the interdependence of activation times
of different nodes is to use the dynamic equations that contain
information about the correlations occurring in the spreading
process. The suggested algorithm is based on the dynamic
message-passing equations for diverse dynamic processes [41].
According to the DMP equations for the SI-type activation
process, the marginal probability mi(τi) of activation of node
i ∈ V at time τi can be computed as

mi(0) = 1− P iS(0), (67)

mi(τi) = P iS(0)

[∏
k∈∂i

θk→i(τi − 1)−
∏
k∈∂i

θk→i(τi)

]
(68)

for τi > 0, where P iS(0) is the probability that node i is
initialized in the state S. The quantities θk→i(t) are computed

iteratively using the following expressions:

θk→i(t) = θk→i(t− 1)− αkiφk→i(t− 1), (69)

φk→i(t) = (1− αki)φk→i(t− 1)

+ P kS (0)
∏

l∈∂k\i

θl→k(t− 1)− P kS (0)
∏

l∈∂k\i

θl→k(t), (70)

with the initial conditions θi→j(0) = 1 and φi→j(0) =
1 − P iS(0). The proof that these equations are exact on trees
and empirical studies of performance on sparse real-world
networks are discussed in [41].

Let us now explain the reconstruction algorithm based on
the DMP equations. Given the data on the cascades ΣO,
we can compute the empirical initial conditions P iS(0) and
marginal probabilities mi

∗(τi), simply given by the averages of
activation times over different cascades at all nodes for which
the information is known. The idea, reminiscent of what has
been previously used in online learning of parameters in the
context of artificial neural networks [44], is to adjust the trans-
mission probabilities Gα in order to minimize the mismatch J
between the DMP-estimated and available empirical marginals
at each time step:

J =

T−1∑
t=0

J(t) =

T−1∑
t=0

∑
i∈O

1

2
[mi
∗(t)−mi(t)]2. (71)

To this end, we use a simple gradient descent: starting
from some initial distribution of transmission probabilities, the
couplings are updated as α(t+1)

rs ← α
(t)
rs − ε∂J(t)

∂αrs
, where ε

is the learning rate. The derivatives of the cost function (71)
with respect to couplings can be expressed through ∂θk→i(t)

∂αrs
≡

pk→irs (t) and ∂φk→i(t)
∂αrs

≡ qk→irs (t), for which the DMP-like
equations can be written using an explicit derivation of the
equations (69)-(70) [43] (see Appendix B-A). The update of
the transmission probabilities is restarted from time zero until
the convergence of the algorithm. Because of the averaging
over the cascades, the resulting computational complexity of
an iteration step of the DMP algorithm is independent on M
and is O(NdT ), where d is the average degree of the graph.

D. Performance of reconstruction algorithms

Although the algorithms described above are designed for
the case of incomplete information, for the validation purposes
we first test their performance in the case of fully observed
cascades. In the Fig. 2, we present results for the mean error of
reconstruction per coupling on a tree graph and on a connected
component of an artificially-generated random graph with a
Pareto power-law degree distribution with a shape parameter
2.5 and minimum value parameter 1. The algorithms were
initialized at αij = 0.5 for all edges (i, j). On the tree
and power-law network, we see that the MLE demonstrates
better performance. The DMP algorithm, in the tree case,
converges slower towards the right couplings, as expected
because DMP equations are exact on a tree. As expected,
the DMP algorithm provides a poorer reconstruction on a
small random graph which contains loops of small length, cf.
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Fig. 3. (Color online) [The figure is not yet complete] Comparison of mean error on the reconstructed couplings as a function of the number of fully observed
cascades M for a tree network with N = 50 (left figure) and a connected component of a power-law network with N = 53 (right figure). Red squares are
data points for the DMP algorithm, blue circles correspond to the reconstruction with ML algorithm. Scatter plots of transmission probabilities reconstructed
by DMP algorithm for M = 106 versus true couplings for a tree (inset of the left figure) and for a power-law network (inset of the right figure).

Fig. 2(b): as demonstrated in the inset of of the Fig. 2(b),
an error for large M is due to the inaccuracy of the DMP
predictions for the couplings in the vicinity of short loops,
while the majority of parameters are correctly predicted by
the algorithm.

The Fig. 3 is devoted to the tests in the presence of nodes
with hidden information. Because of the large convergence
times for MLE and HTS in the case of incomplete information,
we were forced to perform tests on small and loopy networks.
Since the objective function landscapes naturally contain some
local minima for loopy graphs, and in order to reinforce
the convergence of algorithms towards the true solution, we
choose the initial conditions for the couplings using the
following observation: since MLE is supposed to give a good
estimation of the parameters for “complete” neighborhoods
without hidden nodes, we first estimate this part of couplings
using a fast local maximization of (63), and “freeze” these val-
ues in all the algorithms. Other couplings are initialized with
an upper-bounded estimation of the couplings given by (63)
by excluding the hidden nodes. We denote the corresponding
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Fig. 2. (Color online) Main figures: Comparison of mean error on the
reconstructed couplings as a function of the number of fully observed cascades
M for (a) a tree network with N = 50 and (b) a connected component of
a power-law network with N = 53. Insets: Scatter plots of transmission
probabilities reconstructed by DMP algorithm for M = 106 versus true
couplings for (a) a tree and (b) a power-law network. The data has been
generated with {αij}(ij) uniformly distributed in the range [0, 1], and
T = 10.

modification of the DMP algorithm as DMP+MLE. Note that
if the hidden node is a leaf of the network, then no algorithm
can reconstruct the transmission probability associated with
the ingoing directed edge adjacent to this nodes, therefore, we
do not include the such parameters in the computation of the
mean error throughout the Fig. 3. As shown in the Fig. 3, (a)
and (b), the DMP algorithm shows a robust behavior with re-
spect to the increasing number of hidden nodes, demonstrating
comparable results at a substantially lower computational cost
on a small power-law network. Finally, the Fig. 3 (d) shows
reconstruction results on a real-world Zachary’s karate club
network [45] with a very large number of small loops. Other
examples illustrating the reconstruction performance in the
case of incomplete observations in time and in the presence of
noise, both on synthetic and real-world networks are provided
in the Supplementary Information [43].

E. Conclusion and perspectives:

An approximate solution given by the DMP equations
for spreading processes allowed us to introduce a fast and
efficient algorithm for the reconstruction of the transmission
probabilities in the presence of hidden information. Contrary
to the methods based on the maximization of incomplete
likelihood, it can be used for large networks, providing the
best performance in the case of sparse networks. Let us
indicate some possible generalizations and perspectives. Along
with applications to a range of other spreading models [41],
the DMP algorithm can be straightforwardly generalized to
the case of continuous-time models using the continuous
version of the DMP equations [46] (see Appendix B-B) and
to dynamically-varying networks in the spirit of [37]: the
dynamics of the network can be directly encoded into the
DMP equations via the time-dependent couplings αij(t). An
interesting future direction would be to understand if the DMP
approach could be used for the network structure learning if
some part of it is known, or under some restrictions on the
class of networks one tries to reconstruct, e.g. using a `1-
regularization [35], [47]. Some of these directions are further
discussed in [43].



IV. LEARNING ISING MODELS: NEW EFFICIENT
ALGORITHMS

This section is a work in progress with M. Chertkov and H.
Jang.

A. Preliminaries

Undirected GM, or Markov random fields, are widely used
in a variety of domains, including image processing, statistical
physics, sociology and finance, to model and analyze large-
scale systems of interacting elements. The estimation of the
best model that fits the experimental data has become a
problem of major interest in the last two decades. Despite nu-
merous works and an increase in our computational capability,
the problem remains difficult: a generic approach consists in
matching a set of observables estimated from data with the
ones infered by the model, which is known to be hard in
general. The learning problem is often called inverse problem
in the statistical physics community, by contrast to the “direct"
problem of inference.

The Ising model corresponds to a Markov random field with
binary variables and pairwise interactions. It is often used as
a basic starting point to test methods and a minimal model
to analyze correlations between a set of agents. Chow and
Liu [48] were the first to adress this problem in 1968 and
gave a greedy and exact algorithm to learn tree graphs. Since
then, numerous papers have suggested heuristics and exact
algorithms for more general settings and elucidated some of
the difficulties to learn general Ising models. One of them is
the presence of long-range correlations: a node can be more
correlated to a distant node than a neighboring node. Decay
of correlation, which captures the intuition of asymptotic
independence between two spins when their graph-distance
increases, was long believed to be an unavoidable feature for
a model to be efficiently learned [49]. However, Guy Bresler
[5] showed this year that one can learn arbitrary bounded-
degree graph without any assumption on the interactions, with
roughly the same complexity as the tree-case. His algorithm
is yet unpractical and we suggest further works based on
objective-optimization which might present several advantages
for practical implementation: computational efficiency and
direct generalization. Our original contribution is a new convex
estimator and a spin-flip regularization.

In Section IV-A1 we introduce the inverse Ising model
problem and discuss its limitations. In Section IV-B we give
a short review of the past work on learning bounded-degree
Ising models. In Section IV-C we present our new annealed
estimator which is compared to the existing quenched pseudo-
likelihood, and the spin-flip regularization, as an alternative to
the lasso regularization. Finally we discuss about future works
and possible new settings in Section IV-D.

1) Ising Model: We consider an Ising model on a graph
G = (V,E) with |V | = N . A binary random variable Σi ∈

{−1,+1} (spin) is associated to each vertex i ∈ V . The joint
distribution of the spins is given by:

PJ,h(σ) =
1

Z(J)
exp

 ∑
(i,j)∈E

Jijσiσj +
∑
i∈V

hiσi

 (72)

The distribution is then parametrized by
{{Jij}(i,j)∈E , {hi}i∈V } ∈ R|E| × R|V |. For simplicity,
we will reparametrize the model with {Jij}(i,j)∈V×V where
Jij 6= 0 if and only if (i, j) ∈ E.

We will denote α = min(i,j)∈E |Jij | > 0, β =
max(i,j)∈E |Jij |, H = maxi∈V |hi| and ∂i = {j|j ∈
V, (i, j) ∈ E} the neighborhood of the node i.

2) Learning of Graphical Models: given a subset GN,sub ⊂
GN of the set of graphs with N nodes, we consider the set of
Ising models on a graph G ∈ GN,sub and with coefficients in

Θα,β,H(G) ≡
{
J ∈ RN(N−1)/2, h ∈ RN | |hi| ≤ H,
α ≤ |Jij | ≤ β if (i, j) ∈ E
Jij = 0 otherwise

}
(73)

The learning problem consists in reconstructing {J, h}, given
a collection ΣM = Σ(1), . . . ,Σ(M) of M independent and
identically distributed samples drawn from an Ising Model
{J, h}. We remark that if the underlying graph is given, it
is relatively easy to reconstruct the coefficients:

exp(2hi) =
P (σi|σ∂i)

P (−σi| − σ∂i)

exp(2Jij) =
P (σi|σ∂i\j , σj)
P (σi|σ∂i\j ,−σj)

Hence, we will focus on the problem of structure learning. An
algorithm of structure learning is a map, also called decoder:

Φ : ({−1,+1}N )M → GN,sub (74)

which maps the input samples to an undirected graph Ĝ =
Φ(ΣM ). We will consider the following maximum-risk mea-
sure to study the performance of the decoder:

sup
G∈GN,sub

sup
{J,h}∈Θα,β,H(G)

P{J,h}(Φ(ΣM ) 6= G) (75)

which corresponds to the error probability of the worst case
in the subset GN,sub.

We define the sample complexity of the decoder as follows,
given a small parameter δ > 0:

MΦ(δ) = sup
G∈GN,sub

sup
{J,h}∈Θα,β,H(G)

inf{n ∈ N|P{J,h}(Φ(Σn) = G) ≥ 1− δ}(76)

The task is then to find an efficient decoder that has a good
sample complexity, i.e. that minimizes the worst case error for
a given number of samples.

The Ising model is in the exponential family and is therefore
completely characterized by its first and second moments:

νi = EP [σi] , µij = EP [σiσj ] (77)



called sufficient statistics of the distriution. However, it does
not provide any clue on how to define a tractable decoder that
matches the first and second moments.

The search for a practical decoder corresponds to finding
the best trade-off between the sample complexity and the
numerical complexity.

3) Information theoretic limitations: Santhanan and Wain-
wright gave in [50] theoretical bounds on the sample com-
plexity using Fano’s lemma and showed that these bounds
can be achieved with infinite computational power. Given an
arbitrary decoder which selects among a family of L Ising
Model {G(1), . . . , G(L)} and a collection ΣM of M samples
drawn i.i.d from the Ising Model G(k), the lemma states:

Lemma 6. For a given ε > 0, if the sample size M verifies:

M < (1−ε) log(L)

I(Σ1, k)
, or M < (1−ε) L2 log(L)

2
∑
l<mD(G(l), G(m))

where I(Σ1, k) is the mutual information between one sample
and the index of the model, and D(G(l), G(m)) is the sym-
metrized Kullback-Leiber (KL) divergence between the two
distributions G(l) and G(m), then

max
k=1,...,L

PG(k)(Φ(ΣM ) 6= G(k)) ≥ ε− 1

log(L)

Therefore, to have a probability of error smaller than ε −
1

log(L) , M must be larger than the two bounds of the lemma.
Therefore Fano’s lemma gives a lower bound on the sample
complexity.

By using this lemma with a proper choice of the sub-family,
one can show that if we consider the set GN,d of all graphs
with a bounded-degree d:

MΦ(δ) ≤ (1− δ)
eβd log(pd4 − 1)

4αdeα
. (78)

This bound shows that, in the general case (d = N ), with this
measure of performance, one cannot avoid an exponential in
N sample complexity. One then need to restrict the class of
models we considers.

In the rest of this work, we will focus on learning bounded-
degree graphs, although our annealed estimator is not specific
to this setting.

B. Short review of the previous works

The problem of structure learning was first adressed by
Chow and Liu in [48] in which they presented an exact
algorithm to learn tree-graphs with a runtime complexity of
O(N2). Using a pairwise factorization of the distribution spe-
cific to the tree-structure, they showed that by minimizing the
KL divergence between the data and tree-graph distributions,
learning the graph is equivalent to finding the maximum span-
ning tree, where the weight between two nodes corresponds
to their mutual information. Since then, numerous works have
considered other restrictions. We can distinguish between two
types of restrictions: on the structure and on the interactions.

For the first case, Bresler and al. [51] have considered the
family of bounded-degree graphs. By noticing the following
structural property of independency: for i ∈ V and j 6∈ ∂i

P (σi|σ∂i) = P (σi|σ∂i, σj) (79)

they suggested an exhaustive search of the neighborhood.
For each of the

(
N
d

)
possible neighborhoods, one check the

conditional independence for each of the other nodes. They
showed that their algorithm achieves the theoretical bound
of sample complexity O(logN). However, for each sample,
one need to test N times for each possible neighborhood
of each node, wich gives an overall runtime complexity of
O(Nd+2 logN).

For the second type of restrictions, it was observed in [51]
that efficient learning is possible if one assumes decay of
correlation. Other articles have assumed decay of correlation
to give theoretical guarantees (e.g. [52], [53]). Bento and
Montanari [49] even showed that the pseudo-likelihood with
a l1-regularization fails with high probability for regular
ferromagnetic Ising models when there is no more decay of
correlation. Until the recent paper [54], all known efficient
algorithms were assuming decay of correlation and it was
long believed that it was an unavoidable property for efficient
learning [49].

Bresler et al. [54] presented an algorithm to efficiently learn
antiferromagnetic models with strong interactions (no decay
of correlation). Their algorithm is exploiting a specific feature
of the probability that characterizes the presence of an edge
in the case of strong repelling interactions. Then, one year
later, Bresler [5] presented an efficient algorithm for arbitrary
d-bounded-degree graphs and arbitrary couplings. He showed
that there exists a subtle and non-intuitive structural property
of the Ising model that can reduce the size of the potential
neighborhood: for each node i, one can recursively construct
by using mutual information a neighborhood that contains
the true neighborhood and whiose size is bounded and do
not depend on N , the total number of spins. Hence, one can
find these potential neighborhoods and exploit the conditional
independency (79) on these subsets. The resulting algorithm
has a sample complexity of O(ee

cd

logN) and a runtime
complexity of O(ee

cd

N2 logN). Therefore, his algorithm has
roughly the same complexity in N as for the tree-case.
However, the double-exponential in d prefactor makes this
algorithm unpractical.

C. Learning as an optimization problem

Despite achieving the theoretical bound O(logN) on the
sample complexity and an overall runtime complexity of
O(N2), Guy Bresler’s algorithm remains computationally too
heavy for real-life applications, due to the double exponential
in d of the prefactor. Furthermore, his algorithm seems difficult
to implement for a non-binary alphabet and higher-order
interactions. In this section, we follow an alternative approach
to the greedy algorithms: optimization, i.e. the estimator is
defined as the optimum of a function.



1) Pseudo-likelihood: In the bayesian framework, a com-
mon learning method relies on the the maximization of the
likelihood of the data ΣM = {Σ(1), . . . ,Σ

(M)}:

{J, h} = arg max
{J,h}

log

M∏
i=1

P (Σ(i) | {J, h})

= arg max
{J,h}
〈logP (Σ | {J, h})

= arg max
{J,h}

∑
(i,j)∈E

Jij〈σiσj〉+
∑
i∈V

hi〈σi〉

− logZ({J, h}) (80)

This optimization is convex but requires to have an efficient
algorithm to solve the (direct) inference problem of computing
the partition function Z({J, h}) which is non-tractable in the
general case. Even if the direct problem is tractable, e.g. the
planar case, one still need to test a super-exponential number
of graphs.

An alternative estimator has been suggested in the statistics
litterature in the seventies, called maximum pseudo-likelihood,
because local likelihood are used as proxies to the global
likelihood, avoiding the computation of the partition function.
For each node i ∈ V , the maximum pseudo-likelihood is
defined by:

{J∂i, hi} = arg max
{J∂i,hi}

1

M
log

M∏
k=1

Pi(σ
(k)
i | σ(k)

∂i ) (81)

where Pi(σi|σ∂i) is the marginal probability of σi given its
neighborhood:

Pi(σi|σ∂i) =
eσi[

∑
j∈∂i Jijσj+hi]

e
∑
j∈∂i Jijσj+hi + e−

∑
j∈∂i Jijσj−hi

(82)

The function to maximize is hence equal to

Li(Σ
M , J∂i, hi) = hi〈σi〉+

∑
j∈∂i

Jij〈σiσj〉

−〈log(e
∑
j∈∂i Jijσj+hi + e−

∑
j∈∂i Jijσj−hi〉. (83)

In the following, we will call Li the quenched pseudo-
likelihood in order to contrast it with the “annealed" estimator
that we will introduce below.

By taking the first derivative and replacing in (83) the
average on the data 〈·〉 by the exact average EJ∂i,hi [·], the
true couplings are an optimum of the pseudo-likelihood. The
estimor is therefore consistent and gives the right coefficients.
Furthermore, we remark that for any distribution in the ex-
ponential family, (81) is convex. The pseudo-likelihood is
therefore a convex estimator with a unique maximum equal
to the right coefficients when M → +∞. Therefore, one can
use the optimization locally and sequentially, i.e. ∀i ∈ V ,
to recover J and h but also the structure of the graph (for
example, by removing the edges with a coupling inferior to
a certain treshold). However, as we saw in IV-A3, if the
bare optimization of the quenched pseudo-likelihood is applied
at finite M , the decoder will have an exponential sample
complexity in the number of nodes, and hence, an exponential

runtime complexity.

To overcome that problem, adding an l1-regularization local
term to (83) was suggested in [55]:

max
{J∂i,hi}

Li(Σ
M , J∂i, hi) + λl1(J∂i) =

max
{J∂i,hi}

Li(Σ
M , J∂i, hi) + λ

∑
j∈∂i

|Jij |. (84)

This regularization, also called lasso regularization, has been
widely used in optimization to impose sparsity to the recon-
structed parameters. Ravikumar et al. showed that under some
assumptions on the underlying model, one can reconstruct the
true graph with a sample complexity of O(d3 logN).

The assumptions are on the hessian H of the pseudo-
likelihood at the right couplings with infinite sampling. The
dependency condition is that the sub-matrix HSS of the
Hessian with indices in the neighborhood S has bounded
eigenvalues Λ:

C ≥ Λmax(HSS) ≥ Λmin(HSS) ≥ c > 0. (85)

The incoherence condition (the rest of the graph cannot have
an overly strong effect on the neighborhood) is stated as
follows: there exists 0 < α ≤ 1 such that

‖HScSH
−1
SS‖∞ ≤ 1− α. (86)

These conditions are not easily linked to the coefficient but
are believed to be of the decay of correlation type. Bento
and Montanari showed in [49] that they are indeed quite
restrictive: the lasso regularization fails with high probability
for a uniforml random graph of regular degree d > 3 when
the temperature is below a treshold (related but not equal to
the critical temperature).

However, the regularized pseudo-likelihood is widely used
in practice due to its versatility, simplicity to implement, and
computational efficience. Despite its theoretical limitations for
exact reconstruction when using the worst case measure, a
number of works [56] have shown that this estimator is in
average efficient for general topologies, given a fixed number
of samples.

2) Screening objective: Due to their great practicality, it is
interesting to explore other convex estimators. Can we extend
or modify the subspace of models that can be efficiently
learned with an optimization ? Can we beat the decay of
correlation with a proper choice of objective function ?

We consider the following function for each node i ∈ V :

Si(Σ
M , J∂i, hi) = − log〈e−σi[hi+σi

∑
j∈∂i Jijσj ]〉. (87)

First we remark that if we take the exact averaging and



evaluate the function at the right couplings:

〈e−σi[h
∗
i+σi

∑
j∈∂i J

∗
ijσj ]〉

=
1

Z(J∗, h∗)

∑
σ

exp
(∑
k∈V

h∗kσk

+
∑

(k,l)∈E

J∗klσkσl − σi[h∗i + σi
∑
j∈∂i

J∗ijσj ]
)

=
2Z(J∗\i, h

∗
\i)

Z(J∗, h∗)
(88)

where Z(J∗\i, h
∗
\i) is the partition function of the Ising model

where the node i has been erased. The function “screens" the
interaction between a node and the rest of the graph. Therefore
we will call (87) screening ojective.

Secondly, if the distribution is in the exponential family, (87)
is convex. Let us compute the derivative at the right couplings
for the exact averaging:

∂JikSi(Σ
∞, J∗∂i, h

∗
i ) = E|J∂i=0,hi=0[σiσk] = 0 (89)

∂hiSi(Σ
∞, J∗∂i, h

∗
i ) = E|J∂i=0,hi=0[σi] = 0 (90)

Therefore, we have an objective which is convex and which
minimum corresponds to the the right couplings when M →
+∞.

We define the following estimator:

{J∂i, hi} = arg min
{J∂i,hi}

− log〈e−σi[hi+σi
∑
j∈∂i Jijσj ]〉 (91)

which will be called annealed screening, by contrast to the
quenched pseudo-likelihood.

In the same way as in IV-C1, one can add an l1-
regularization. The exact Hessian at the minimum is given
by (if we consider only the pairwise parameters):

Hk,l =E|J∂i=0,hi=0[σkσl]

− E|J∂i=0,hi=0[σk]E|J∂i=0,hi=0[σl] (92)

In the case of a tree, the Hessian will be block-diagonal,
with non-zero coefficient only if k and l are on the same
branch starting from i. The conditions (85) and (86) will be
always satisfied in this case. If a similar result to [55] on
the regularized pseudo-likelihood stands for the annealed case,
this remark seems to indicate that this estimator do not have
a phase transition on the sampling complexity for trees.

Besides, it is interesting to compare the performance of the
quenched and annealed objective and see if we can retrieve
some of their property they have in the inference setting.
We expect that in the case of correlation decay, the two
schemes will have comparable performance. Based on what
differentiate annealed and quenched in traditional statistical
physics context, namely that the optimality of the annealed
scheme will not change with the transition from an ordered
to a glassy phase, we would also expect a difference in
their behavior below the critical temperature. Besides, the
annealed functions have a much better, large-deviation type,
concentration than their quenched counter-parts, which might
turn out advantageous if it used in the context of a biased

sampling or an active learning.
This convex estimator is currently investigated numerically.
3) Spin-flip regularization: It might also be interesting to

explore other regularization functions to replace/be added to
the l1-regularization. Here we suggest a regularization based
on a specific symmetry of the Ising model: the distribution is
invariant with respect to a flip of the spin variables within a
subset of nodes and the flip of the sign of their magnetic fields
and of the couplings on the boundary.

This symmetry imposes a set of constraints on the re-
constructed couplings. Given an Ising model (G, J, h), we
consider an embedding of the graph in R3 such that edges
intersects only at their extremities. For any volume V ⊂ R3

such that its surface ∂V intersects at most one time each
edge, and for any partition of its surface into two subsets
∂V = Γ ∪ Γc, we have the following equality :

EJ,h

 ∏
(i,j)⊥Γ

exp(−2Jijσiσj)
∏
i∈V

exp(−2hiσi)


= EJ,h

 ∏
(i,j)⊥Γc

exp(−2Jijσiσj)

 (93)

The proof of this relation is simple: one writes explicitly the
expectation and notices that by flipping the spins inside V one
obtains the equality.

The simplest equality that we can use to regularize our ob-
jective function is to consider the following local constraints:
we consider for each node i ∈ V , a volume V containing only
i and Γ ≡ ∂V

∀i ∈ V : EJ,h

exp

−2hiσi − 2
∑
j∈V

Jijσiσj

 = 1, (94)

which follows explicitly from the σi → −σi change of
variables within the expectation. Here in (94) we assume that
Jij = 0 if (i, j) /∈ E.

We suggest to try using the constraint (94), or similar
constraints, as a substitute for the l1-regularization, in the
annealed and pseudo-likelihood optimization schemes. Specifi-
cally, one may have the following (properly weighted) addition
to the cost in (83) or in (87)logEJ,h

exp

−2hiσi − 2
∑
j∈V

Jijσiσj

2

(95)

which is differentiable. We notice that this regularization is
not convex: it has at least two minima, the right coefficients
and the trivial coefficients hi = 0 and Jij = 0. However,
if we manage to impose a local domain restriction in the
space of Jij and hi (e.g. by starting the optimization without
regularization), one may ensure local convexity of the spin-
flip regularizer. This regularization might, by enforcing an
additional constraint, speed up the optimization (deeper well
at the minimum) and improve the result in different contexts
(in the case of a small number of data).



D. Discussion

Convex optimization represents a simple-to-implement,
general-scope framework widely used in applications. Here
we suggest to explore this approach in the context of Ising
Model learning. We saw in IV-C1, that efficient learning is
restricted to a subspace of the coefficients in the case of
pseudo-likelihood. Can we extend this subspace with other
objective functions? Then, one might try different functions or
even mix them in order to learn the model. An other important
question concerns the decay of correlation: does optimization
require decay of correlation for an efficient learning? Besides,
the maximum-risk measure in the case of exact learning is
too strong for practical application with M finite: it might
be interesting to consider other measures of performance
(Kullback-Leiber divergence, average error, etc.).

Bresler’s algorithm uses a particular structural property of
the Ising model. Following this idea, we introduced in IV-C3 a
regularizer exploiting the spin-flip symmetry. Can we mix the
greedy and optimization approach? For example, one might
sequentially optimize the pseudo-likelihood, tresholding the
coefficents to reduce the potential neighborhood and then
switch to a greedy approach.

The use of the annealed screening might also be interesting
in other contexts, e.g. the samples are biased (they have been
produced by a markov process). It might also present some
advantages if an active learning is developed to speed up the
learning process, or to improve the use of the data.

APPENDIX A
PROOFS OF LEMMAS

A. Proof of Lemma 4

Proof: We prove Lemma 4 only for the BSC (the proof
for the BEC is almost identical). For a given ρ and p, let us
define the following function

gBSC (x0, xc, y, η
)

= f
(
x0, xc, y, ρ

)
+ k (x0, xc, ρ, p)

− 2η (x0 (1− ρ) + xcρ) . (96)

The function gBSC
(
x0, xc, y, η

)
corresponds to the exponent

of the loop series (42) associated with the loop type (x0, xc, y).
In order to prove Lemma 4, we have to find η̃ < 0 such that
gBSC is non-positive on D(ρ)× [η̃,+∞[.

We first show that for any η̃1 < 0, there exists a neigh-
borhood U of (xo, xc, y) = (0, 0, 0) such that gBSC is non-
positive on U ∩ D(ρ) × [η̃1,+∞[. For a fixed η̃1 < 0 we
construct a function gBSC that is an upper bound of gBSC. We
restrict ourselves to the domain V ∩D(ρ)× [η̃1,+∞[, where
V = B(0, 1/3r) is the ball of radius 1/3r centered at (0, 0, 0).

Let us explicitly write down the function (96) term by term

gBSC (x0, xc, y, η
)

= −2η (x0 (1− ρ) + xcρ)

+ (ρxc − (1− ρ)x0) ln

(
1− p
p

)
+

l

r

br/2c∑
t=1

yt ln

(
r
2t

)
− lh2 ((1− ρ)x0 + ρxc)

+ (1− ρ)h2 (x0) + ρh2 (xc)

− l

r

(
1−

r∑
t=1

yt

)
ln

(
1−

r∑
t=1

yt

)

− l

r

r∑
t=1

yt ln yt. (97)

We bound each term of (97) separately. Denote the fraction
of variable nodes in the loop by X = x0 (1− ρ) + xcρ. The
inequalities below trivially hold

(ρxc − (1− ρ)x0) ln

(
1− p
p

)
≤ 2 ln

(
1− p
p

)
X

l

r

br/2c∑
t=1

yt ln

(
r
2t

)
≤ l ln

(
r

2 br/2c

)
X

−2η (x0 (1− ρ) + xcρ) ≤ −2η̃1X. (98)

As the entropy is a concave function, we have the following
inequality

(1− ρ)h2 (x0) + ρh2 (xc) ≤ h2(X). (99)

Concativty of −x lnx gives us

−
br/2c∑
t=1

yt ln yt ≤ −

br/2c∑
t=1

yt

 ln

 1

br/2c

br/2c∑
t=1

yt


≤ −

br/2c∑
t=1

yt

 ln

br/2c∑
t=1

yt


+r ln (br/2c)X. (100)

Note that since the domain is restricted to types in a ball of
radius 1/3r, the fraction of variable nodes in a loop is upper-
bounded X ≤ 1/3r. In particular it implies that

br/2c∑
t=1

yt ≤
r

2

br/2c∑
t=1

2t

r
yt


=

r

2
X

≤ 1

6

≤ 1

e
, (101)

where e is the Euler constant. Finally as the entropy is



increasing on
[
0, 1

e

]
, we have

l

r
h2

br/2c∑
t=1

yt

 ≤ l

r
h2

(r
2
X
)
. (102)

The upper bound on the function (97) is simply the sum of
Inequalities (98), (99), (100) and depends only on the fraction
of variable nodes in a loop i.e. gBSC

(
x0, xc, y, η

)
≡ gBSC(X)

gBSC(X) =
l

r
h2

(r
2
X
)
− (l − 1)h2 (X) +MX,(103)

where M is a constant independent of η and ρ

M = 2 ln

(
1− p
p

)
+ l ln

(
r

2 br/2c

)
+ l ln (br/2c)− 2η̃1.

(104)
Notice that gBSC(0) = 0 and that the derivative d

dX g
BSC(X)

behaves like
(
l
2 − 1

)
lnX in the neighborhood of 0. Hence,

for l ≥ 3, there exists δ > 0 such that gBSC is negative on
]0, δ]. Therefore for all types (xo, xc, y) ∈ D(ρ) in the domain
U = B(0, δ) ∩ B(0, 1/3r) and for all η ∈ [η̃1,+∞[ we have

gBSC (x0, xc, y, η
)
≤ gBSC(X)

≤ 0. (105)

By hypothesis the maximum of (48) is uniquely achieved
in (0, 0, 0) for η = 0. It implies that there exists λ < 0 such
that

max
(x0,xc,y)∈D(ρ)\U

f
(
x0, xc, y, ρ

)
+k (x0, xc, ρ, p) = λ. (106)

Therefore for η > η̃2 = λ/2

max
(x0,xc,y)∈D(ρ)\U

gBSC (x0, xc, y, η
)
≤ λ− 2η̃2 = 0. (107)

We see that η̃ = max(η̃1, η̃2) < 0 satisfies by construction
the condition of Lemma 4.

B. Proof of Lemma 5

Proof: We prove Lemma 5 only for the BSC (the proof
for the BEC is almost identical). For a given ρ and p, we
recall the function gBSC

p,ρ ≡ gBSC and gBSC
p,ρ ≡ gBSC as defined

in Appendix A-A. We prove that for n sufficiently large and
for all δ ∈

[
−
√
n−1 lnn,

√
n−1 lnn

]
, the function gBSC

p,ρ+δ is
still non-positive on D(ρ).

First notice that the upper bound gBSC
p,ρ does not depend on ρ.

Using the same argument as in Appendix A-A, there exists a
neighborhood U of (0, 0, 0) such that for all type (x0, xc, y) ∈
U ∩D(ρ+ δ) and for all δ ∈

[
−
√
n−1 lnn,

√
n−1 lnn

]
gBSC
p,ρ+δ

(
x0, xc, y, 0

)
≤ gBSC

p,ρ (X)

≤ 0. (108)

It remains to show that the variation of gBSC on D (ρ+ δ)\
U is bounded. Let us make the change of variables (x0, xc)→

(X,xc) and gBSC
p,ρ+δ

(
x0, xc, y, 0

)
→ gBSC

p,ρ+δ

(
X,xc, y, 0

)
. The

following inequality holds

gBSC
p,ρ+δ

(
X,xc, y, 0

)
≤ 2

√
lnn

n

(
ln 2 + ln

(
1− p
p

))
+ gBSC

p,ρ

(
X,xc, y, 0

)
. (109)

Hence we can bound the maximum of gBSC on D(ρ+ δ) \ U
by

max
(X,xc,y)∈D(ρ+δ)\U

gBSC
p,ρ+δ

(
X,xc, y, 0

)
≤

max
(X,xc,y)∈D(ρ)\U

gBSC
p,ρ

(
X,xc, y, 0

)
+c

√
lnn

n
.(110)

The maximum of gBSC
p,ρ

(
X,xc, y, 0

)
on D(ρ + δ) \ U

is by hypothesis negative (see Equation (106)). There-
fore for n sufficiently large we have that for all δ ∈[
−
√
n−1 lnn,

√
n−1 lnn

]
max

(x0,xc,y)∈D(ρ+δ)\U
gBSC
p,ρ+δ

(
x0, xc, y, 0

)
≤ 0, (111)

which concludes the proof.

APPENDIX B
LEARNING SPREADING PROCESS: SUPPLEMENTAL

MATERIAL

A. Computation of the gradient in the DMP algorithm

In this section, we will provide details for the derivation
of the dynamic message-passing equations that we use to
compute the gradient of the costfunction J(t) (equation (71)
in the main text) at each iteration step of the DMP algorithm:

− ∂J(t)

∂αrs
=
∑
i∈O

[mi
∗(t)−mi(t)]

∂mi(t)

∂αrs
. (112)

Using the equation (69) of the main text, we have

∂mi(t)

∂αrs
= P iS(0)

[ ∑
k∈∂i

∂θk→i(t− 1)

∂αrs

∏
l∈∂i\k

θl→i(t− 1)

−
∑
k∈∂i

∂θk→i(t)

∂αrs

∏
l∈∂i\k

θl→i(t)
]
.(113)

Let us introduce useful notations:

∂θk→i(t)

∂αrs
≡ pk→irs (t),

∂φk→i(t)

∂αrs
≡ qk→irs (t). (114)

Then, since the initial dynamic messages {θi→j(0)}(ij)∈E and
{φi→j(0)}(ij)∈E are independent on the couplings, we have
pk→irs (0) = qk→irs (0) = 0 for all k, i, r and s, and these
quantities can be computed iteratively using the analogues of



(69) and (70):

pk→irs (t) = pk→irs (t− 1)− αkiqk→irs (t− 1)

− φk→i(t− 1)1[k = r, i = s], (115)

qk→irs (t) = (1− αki)qk→irs (t− 1)

− φk→i(t− 1)1[k = r, i = s]

+ P kS (0)
∑
l∈∂k\i

pl→krs (t− 1)
∏

n∈∂k\{i,l}

θn→k(t− 1)

− P kS (0)
∑
l∈k\i

pl→krs (t)
∏

n∈∂k\{i,l}

θn→k(t). (116)

Hence, at each time step, we compute the marginals using
the equations (68)-(70) and use (113)-(116) to update the
couplings. In principle, at each iteration step of the algorithm
we could run the DMP equations for all T time steps with
the current estimation of the couplings, and only then update
the transmission probabilities using the derivative of the total
cost function J =

∑T−1
t=0 J(t); we found that the “online”-

like update at each time step in the spirit of [44] leads to a
faster convergence of the algorithm. An intuition behind this
choice is as follows: instead of accumulating the error due
to the current estimation of the couplings through the whole
process, we adjust the couplings progressively as the processes
spreads throughout the network.

In practice, we observed that a simple gradient descent with
a fixed learning rate ε demontsrated good convergence to the
optimum, and this is the procedure that we used for producing
all the plots in this paper. For most of the plots, we used
ε = 5.0, and a tolerance on the change of the objective function
δ = 10−12 as a stopping criteria for the algorithm. It would be
interesting to see if the convergence properties of the algorithm
in very hard cases can be further improved by exploring two
straightforward extensions:

1) Adding to the cost function J terms that would reinforce
a matching of the two-point correlations corresponding
to the probabilities of observing mean probabilities
of pairs 〈Si(t)Sj(t)〉, 〈Si(t)Ij(t)〉 and 〈Ii(t)Ij(t)〉 for
(ij) ∈ E. In fact, these two-point correlations at equal
times can be computed within the DMP approach: the
basic relation is 〈Si(t)Sj(t)〉 = P i→jS (t)P j→iS (t), where

P i→jS (t) = P iS(0)
∏

k∈∂i\j

θk→i(t) (117)

has a meaning of the probability that the node i is in the
state S at time t in an auxiliary cavity dynamics Dij , in
which the node j is fixed to the state S for all times; see
[41] for more details. Once 〈Si(t)Sj(t)〉 are computed,
the other correlations are directly expressed as

〈Si(t)Ij(t)〉 = P iS(t)− 〈Si(t)Sj(t)〉,
〈Ii(t)Ij(t)〉 = 1− P iS(t)− 〈Ii(t)Sj(t)〉. (118)

2) Using the information contained in the second deriva-
tives of the cost function J for a better control over the
convergence. Indeed, the second derivatives can be com-

puted in the same message-passing way as the gradient;
it would, however, involve manipulations with the sixth-
order tensors, as opposed to the fourth-order quantities
used in the computation of the gradient (115) and (116).
For example, if we denote ∂2θk→i(t)

∂αrs∂αuv
≡ pk→irs,uv(t) and

∂2φk→i(t)
∂αrs∂αuv

≡ qk→irs,uv(t), and since from (68) of the main
text we have mi(t) = P iS(t − 1) − P iS(t) for t > 0,
where

P iS(t) = P iS(0)
∏
k∈∂i

θk→i(t), (119)

it is sufficient to compute

∂2P iS(t)

∂αrs∂αuv
= P iS(0)

∑
k∈∂i

[
pk→irs,uv(t)

∏
l∈∂i\k

θl→i(t)

+pk→iuv (t)
∑
m∈i\k

pm→irs (t)
∏

l∈∂i\{k,m}

θl→i(t)
]
, (120)

with pk→irs,uv(t) following dynamic message-passing
equations obtained as a derivative of (115) and (116)
with respect to αuv .

B. DMP algorithm for continuous dynamics

All the results in this Letter have been presented for the
discrete-time model insofar. In this section, we briefly discuss
how the same techniques can be easily extended to continuous
case. The maximum likelihood estimator has been originally
suggested for the continuous dynamics of the independent-
cascade model [36]; our extension of the MLE for the case
of missing information follows straightforwardly the main
text, with discrete sums replaced by the integrals. For the
DMP algorithm, we can use the continuous version of the
DMP equations for the SI model, derived for the first time in
[46]. An importance difference only concerns a choice of the
objective function J : as in the case of missing information in
time, it is more convenient to quantify the mismatch in terms
of probabilities P iS(t):

J ′(t) =

n∑
t=0

J(t) =

n∑
t=0

∑
i∈O

1

2

[
P̃ iS

(
t

n
T

)
− P iS

(
t

n
T

)]2

,

(121)
where n+ 1 is a number of discretization steps in time which
should be related to the statistics of activation times in M
observed cascades, or to the set of observation times in the
case of incomplete information in time, while P̃ iS(t) and P iS(t)
are defined in the same way as for the incomplete information
in time.

In the case of constant rates αij , we define the transmission
function as fij(t) = αije

−αijt. Then the functions θi→j(t) are



computed as follows [46]:

θi→j(t) = 1−
∫ t

0

dτ fij(τ)

1− P iS(0)
∏

k∈∂i\j

θk→i(t− τ)


= e−αijt

+ P iS(0)αije
−αijt

∫ t

0

dτ eαijτ

 ∏
k∈∂i\j

θk→i(τ)

 .

(122)

In order to compute the dynamic messages θi→j(t), we can
either integrate the expression (122) numerically, or transform
the equation above into an ordinary differential equation by
integrating the last term in (122) by parts:

dθi→j(t)

dt
= −αijθi→j(t) + αijP

i
S(0)

∏
k∈∂i\j

θk→i(t), (123)

which can be solved numerically starting from initial con-
ditions θi→j(0) = 1. The probabilities P iS(t) are computed
according to (119) in the continuous case as well.

The couplings are updated according to α(t+∆t)
rs ← α

(t)
rs −

ε∂J
′(t)

∂αrs
for t ∈ [0, n] and fixed learning rate ε, where

− ∂J ′(t)

∂αrs
=
∑
i∈O

[
P̃ iS

(
t

n
T

)
− P iS

(
t

n
T

)]
∂P iS (Tt/n)

∂αrs
.

(124)
The derivative of P iS (Tt/n) reads:

∂P iS (Tt/n)

∂αrs
= P iS(0)

∑
k∈∂i

pk→irs (Tt/n)
∏

l∈∂i\k

θl→i(Tt/n),

(125)
where pk→irs (t) obeys the following ordinary differential equa-
tion, obtained by taking a derivative of (123):

dpk→irs (t)

dt
= −αkipk→irs (t)

+ αkiP
k
S (0)

∑
m∈k\i

pm→krs (t)
∏

l∈∂k\{i,m}

θl→k(t)

+1[k = r, i = s]

P kS (0)
∏

l∈∂k\i

θl→k(t)− θk→i(t)

 .
(126)

C. Reconstruction of transmission probabilities in the case of
noisy information

In this section, we show that the DMP algorithm is naturally
adapted for an efficient reconstruction in the case where the
activation times are observed with some noise fluctuating
around the true values of the activation time. The reason
for that lies in the averaged empirical marginal probabilities
used as an input for the DMP algorithm: while this averaging
of the original data may represent a certain drawback since
some detailed information on the cascades is lost, in the
case of the observations corrupted by noise this procedure
has a clear advantage because of the effective averaging
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Fig. 4. (Color online) Comparison of mean error on the reconstructed
couplings as a function of the number of fully observed cascades M for
(a) a tree network with N = 50 and (b) a connected component of a power-
law network with N = 53. Insets: Scatter plots of transmission probabilities
reconstructed by DMP algorithm for M = 106 versus true couplings for (a)
a tree and (b) a power-law network. The data corresponds to the perturbed
cascades that has been generated from {αij}(ij) uniformly distributed in the
range [0, 1], and T = 10.

over the fluctuations. As a simple test, we have perturbed
a subset of the observed activation times (chosen among all
activation times uniformly with probability 1/5) {τ ci }i∈V for
c = 1 . . .M cascades with a noise {∆τ ci }i∈V of randomly
chosen sign, with absolute value distributed according to the
Poisson distribution with mean µ = 1. The results of a naive
application of MLE and DMP algorithms are presented in the
Fig. 4.
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