Introduction

- In many learning tasks, the **data present some natural** symmetries (e.g., labels are invariant under translation of the images in image recognition tasks).
- One important goal of machine learning has been to design predictive models that take advantage of these **symmetries** to make a more efficient use of data.
- For instance, **convolutional networks** are believed to owe their success to their ability to encode translation invariance.
- Empirically, models that exploit invariances perform better that models that do not.

Focus of this work:

Quantifying the performance gain of using invariant architectures over non-invariant ones in random features and kernel models.

Setting and models

- Data: $\boldsymbol{x} \sim \text{Unif}(\mathcal{A}_d), \ \mathcal{A}_d = \mathbb{S}^{d-1}(\sqrt{d}) \text{ or } \mathcal{A}_d = \{-1, +1\}^d.$
- Invariance group: \mathcal{G}_d subgroup of orthogonal group $\mathcal{O}(d)$ (that preserves the hypercube if $\mathcal{A}_d = \{-1, +1\}^d$).
- Goal: learn a \mathcal{G}_d -invariant function f_{\star}

i.e.,
$$f_{\star}(g \cdot \boldsymbol{x}) = f_{\star}(\boldsymbol{x})$$
 for all $g \in \mathcal{G}_d$,

given iid samples $\{y_i, \boldsymbol{x}_i\}_{i \leq n}$ with $\boldsymbol{x}_i \sim_{iid} \mathsf{Unif}(\mathcal{A}_d)$ and $y_i = f_{\star}(\boldsymbol{x}_i) + \varepsilon_i, \qquad \mathbb{E}[\varepsilon_i] = 0, \quad \mathbb{E}[\varepsilon_i^2] \le \tau^2.$

Models:

• Random Features models: $(\sqrt{d}\boldsymbol{w}_i) \sim_{iid} Unif(\mathcal{A}_d)$ fixed,

$$\hat{f}_{\mathsf{RF}}(\boldsymbol{x};\boldsymbol{a}) = \sum_{j=1}^{N} a_j \sigma(\langle \boldsymbol{w}_j, \boldsymbol{x} \rangle)$$

$$\rightarrow \hat{f}_{\mathsf{RF}}^{\mathsf{inv}}(\boldsymbol{x};\boldsymbol{a}) = \sum_{j=1}^{N} a_j \int_{\mathcal{G}_d} \sigma(\langle \boldsymbol{w}_j, \boldsymbol{g} \cdot \boldsymbol{x} \rangle) \pi_d(\mathrm{d}\boldsymbol{g}),$$

where π_d is the Haar measure on the group \mathcal{G}_d . Fit the coefficients with Ridge Regression (RFRR):

$$\hat{\boldsymbol{a}}^{\text{inv}}(\lambda) = \arg\min_{\boldsymbol{a}\in\mathbb{R}^N} \left\{ \sum_{i=1}^n \left(y_i - \hat{f}_{\mathsf{RF}}^{\text{inv}}(\boldsymbol{x}_i; \boldsymbol{a}) \right)^2 + N\lambda \|\boldsymbol{a}\|_2^2 \right\}.$$

• **Kernel models:** inner-prod. kernel $H(\boldsymbol{x}, \boldsymbol{z}) = h\left(\frac{\langle \boldsymbol{x}, \boldsymbol{z} \rangle}{d}\right)$,

$$\rightarrow H^{\text{inv}}(\boldsymbol{x}, \boldsymbol{z}) = \int_{\mathcal{G}_d} h(\langle \boldsymbol{x}, \boldsymbol{g} \cdot \boldsymbol{z} \rangle / d) \, \pi_d(\mathrm{d}\boldsymbol{g}).$$

Fit the function with Kernel Ridge Regression (KRR):

$$\hat{f}_{\lambda}^{\text{inv}} = \arg\min_{\hat{f}\in\mathcal{H}^{\text{inv}}} \left\{ \sum_{i=1}^{n} \left(y_i - \hat{f}^{\text{inv}}(\boldsymbol{x}_i) \right)^2 + \lambda \| \hat{f}^{\text{inv}} \|_{\mathcal{H}^{\text{inv}}}^2 \right\}.$$

Learning with invariances in random features and kernel models

Song Mei¹

²Department of Statistics, Stanford University

Example: 2-layer CNN

- The cyclic group $\mathcal{G}_d = \{g_0, g_1, \dots, g_{d-1}\}$:
 - $g_i \cdot \boldsymbol{x} = (x_{d-i+1}, x_{d-i+2}, \dots, x_d, x_1, x_2, \dots, x_{d-i}).$
- Cyclic invariant RF model:

$$f_{\mathsf{RF}}^{\mathrm{inv}}(\boldsymbol{x};\boldsymbol{a}) = \frac{1}{d} \sum_{j=1}^{N} a_j \sum_{k=1}^{d} \sigma(\langle \boldsymbol{w}_j, \boldsymbol{g}_k \cdot \boldsymbol{x} \rangle).$$

2-layers CNN with global average pooling & filters $\boldsymbol{w}_i \in \mathbb{R}^d$. • Inner-prod. kernel: NTK of fully-connected NNs; vs Cyclic invariant kernel: NTK of 2-layer CNN with global pooling. \rightarrow performance gap FC-NN vs. CNN in kernel regime.

Degeneracy of the invariance group

- Identify **degeneracy** of \mathcal{G}_d as the measure of the approx. and generalization power gain of using invariant models.
- $V_{d,k}$: subspace of degree-k polynomials orthogonal to degree-(k-1) polynomials in $L^2(\mathcal{A}_d)$.
- $V_{d,k}(\mathcal{G}_d)$: subspace of $V_{d,k}$ of \mathcal{G}_d -invariant polynomials.

Groups of degeneracy $\alpha \in \mathbb{R}_{>0}$

 \mathcal{G}_d has degeneracy α if for any $k \geq \alpha$, we have $\dim(V_{d,k}) / \dim(V_{d,k}(\mathcal{G}_d)) \asymp d^{\alpha}.$

• d^{α} : **'effective dimension'** of the action of the group.

- $\alpha = 1$ for cyclic group.
- Not necessarily equal to the size of \mathcal{G}_d : e.g., translation invariance on band-limited signals $Sft_d = \{g_u, u \in [0, 1]\}$

 $g_u \cdot \boldsymbol{x} = (x_1, \cos(2\pi u)x_2 + \sin(2\pi u)x_3, \ldots).$ Sft_d has degeneracy $\alpha = 1$.

Counting invariant polynomials

- $\{Y_{ks}\}_{s < B_{dk}}$ orthonormal basis of $V_{d,k}$ $(B_{d,k} = \dim(V_{d,k}))$. • $\{\overline{Y}_{ks}\}_{s < D_{dk}}$ orth. basis of $V_{d,k}(\mathcal{G}_d)$ $(D_{d,k} = \dim(V_{d,k}(\mathcal{G}_d)))$.
- Gegenbauer polynomial on \mathcal{A}_d of degree-k:

$$Q_k(\langle \boldsymbol{x}, \boldsymbol{z} \rangle) = rac{1}{B_{d,k}} \sum_{s \leq B_{d,k}} Y_{ks}(\boldsymbol{x}) Y_{ks}(\boldsymbol{z}).$$

Representation lemma

Lemma 1 ([3]) We have

$$\frac{1}{D_{d,k}} \sum_{s \leq D_{d,k}} \overline{Y}_{ks}(\boldsymbol{x}) \overline{Y}_{ks}(\boldsymbol{z}) = \frac{B_{d,k}}{D_{d,k}} \int_{\mathcal{G}_d} Q_k(\langle \boldsymbol{x}, \boldsymbol{g} \cdot \boldsymbol{z} \rangle) \pi_d(\mathrm{d}\boldsymbol{g}).$$

• To compute degeneracy, it is sufficient to show for all $k \geq \alpha$:

 $\mathbb{E}_{\boldsymbol{x}\sim\mathsf{Unif}(\mathcal{A}_d)}\left[\int_{\boldsymbol{G}_d} Q_k(\langle \boldsymbol{x},\boldsymbol{g}\cdot\boldsymbol{z}\rangle)\,\boldsymbol{\pi}_d(\mathrm{d}\boldsymbol{g})\right] = \frac{D_{d,k}}{B_{d,k}} = \Theta_d(d^{-\alpha}).$

Does not significantly improve on standard KRR. (d) Full data augmentation: add $\{(y_i, g \cdot x_i)\}_{i \le n, q \in \mathcal{G}_d}$ to the training set with standard KRR. \Rightarrow this is equivalent to invariant KRR [1].

Theodor Misiakiewicz² Andrea Montanari^{2,3}

³Department of Electrial Engineering, Stanford University

Test error of invariant models

• Let f_{\star} be \mathcal{G}_d -invariant with \mathcal{G}_d group of degeneracy α . • Test error with square loss:

 $R(f_{\star}, \boldsymbol{X}, \boldsymbol{W}, \lambda) = \mathbb{E}_{\boldsymbol{x}} \Big\{ \Big(f_{\star}(\boldsymbol{x}) - \hat{f}_{\mathsf{RF}}(\boldsymbol{x}; \hat{\boldsymbol{a}}(\lambda)) \Big)^2 \Big\}.$

Test error of RFRR

Theorem 1 ([3]) Assume $\max(N/n, n/N) \geq d^{\delta}$ and $\lambda = O_d(1 \vee (N/n)), \sigma \text{ stisfies some conditions, then:}$ • (Standard RF) If $d^{\ell+\delta} \leq \min(N, n) \leq d^{\ell+1-\delta}$,

 $R(f_{\star}, \boldsymbol{X}, \boldsymbol{W}, \lambda) = \|\mathsf{P}_{>\ell} f_{\star}\|_{L^2}^2 + o_{d, \mathbb{P}}(\cdot).$ • (Invariant RF) If $d^{\ell+\delta}/d^{\alpha} \leq \min(N, n) \leq d^{\ell+1-\delta}/d^{\alpha}$, $R^{\operatorname{inv}}(f_{\star}, \boldsymbol{X}, \boldsymbol{W}, \lambda/d^{\boldsymbol{\alpha}}) = \|\mathsf{P}_{>\ell}f_{\star}\|_{L^{2}}^{2} + o_{d,\mathbb{P}}(\cdot).$

 $\mathsf{P}_{>\ell}$: projection orthogonal to the space of degree- ℓ polynomials.

• RFRR learns the best degree- ℓ polynomial approx. to f_{\star} . • Same result for KRR as above with $N = \infty$: invariant KRR saves a factor d^{α} in sample size compared to standard KRR.

Invariant RF saves a factor d^{α} in sample size and number of hidden units to achieve same test error as std. RF.

Assumptions on σ

• Results: **consequence of a general framework** in [2]. • Technical general conditions of [2] checked for • Cyclic group and σ assumed $(\ell + 1)$ -differentiable. • General groups of degeneracy α and σ polynomial. • Deferred weaker conditions to future work (if σ diff., our

proof techniques generalize to subgroups of permutations).

Symmetrization and data augmentation

Compare 4 approaches to learning invariant models:

(a) Standard KRR: with inner-prod. kernel. (b) Invariant KRR: with invariant kernel ('intrinsic

approach': invariance directly enforced in the model).

(c) Output symmetrization: take f_{λ} solution of standard KRR and symmetrize it:

$$\hat{f}^{\text{inv}}_{\lambda}(\boldsymbol{x}) := \int_{\mathcal{G}_d} \hat{f}_{\lambda}(\boldsymbol{g} \cdot \boldsymbol{x}) \, \pi_d(\mathrm{d}\boldsymbol{g}).$$

Test errors: $(b) = (d) \ll (c) \approx (a).$

- Inner-prod.
- Space $V_{d,k}$
- H_d^{inv} has the with degen
- Theorem eigenvect.

Define s^{eff} Then **KR**

 $f_{\lambda}($

Learn eiger

- Std KRR if $d^{\ell+\delta} \leq n$
- Inv KRR Hence if d^{ℓ}

- Enhanced convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809, 2019.
- [2] S. Mei, T. Misiakiewicz, and A. Montanari. concentration. arXiv preprint arXiv:2101.10588, 2021.

Sketch of the proof for KRR

. kernels have eigenspaces
$$V_{d,k}$$
:
 $H_d(\boldsymbol{x}, \boldsymbol{z}) = \sum_{k=0}^{\infty} \xi_{d,k}^2 \sum_{s \leq B_{d,k}} Y_{ks}(\boldsymbol{x}) Y_{ks}(\boldsymbol{z}).$
is **preserved under the action of** \mathcal{G}_d :
 $H_d^{\text{inv}}(\boldsymbol{x}, \boldsymbol{z}) = \sum_{k=0}^{\infty} \xi_{d,k}^2 \sum_{s \leq D_{d,k}} \overline{Y}_{ks}(\boldsymbol{x}) \overline{Y}_{ks}(\boldsymbol{z}).$
the same eigenvalues $\xi_{d,k}^2 = \Theta_d(d^{-k})$ as H_d but
thereacy lower by a factor $B_{d,k}/D_{d,k} = \Theta_d(d^{\alpha}).$
a [2]: kernel eigenval. $\{\lambda_{d,k}\}$ in decreas. order,
 $\{\psi_k\}$ + technical conditions. Let $m \in \mathbb{N}$ s.t.
 $d_{m+1} \cdot n^{1+\delta} \leq \sum_{k \geq m+1} \lambda_{d,k}, \qquad m \leq n^{1-\delta}.$
 $= \lambda + \sum_{k \geq m+1} \lambda_k.$
R acts as shrinkage operator, i.e.,
 $(\boldsymbol{x}) \approx \sum_{k \geq 1} \frac{\lambda_{d,k}}{\lambda_{d,k} + s^{\text{eff}}/n} \cdot \langle f_{\star}, \psi_k \rangle_{L^2} \cdot \psi_k(\boldsymbol{x}).$
Indirection if $\lambda_{d,k} \gg \frac{s^{\text{eff}}}{n}$, not at all if $\lambda_{d,k} \ll \frac{s^{\text{eff}}}{n}.$
R: $m = \#\{Y_{ks}\}_{k \leq \ell} = \Theta_d(d^{\ell}), s^{\text{eff}} = \Theta_d(1).$ Hence
 $\psi \leq d^{\ell+1-\delta}$, learns degree- ℓ polynomial approx.
R: $m = \#\{\overline{Y}_{ks}\}_{k \leq \ell} = \Theta_d(d^{\ell-\alpha}), s^{\text{eff}} = \Theta_d(d^{-\alpha}).$
 $\mathcal{C} = \alpha + \delta \leq n \leq d^{\ell+1-\alpha-\delta}$, learns degree- ℓ approx.
Numerical illustration

• Data $\boldsymbol{x} \sim \mathsf{Unif}(\mathbb{S}^{d-1}(\sqrt{d}))$ with d = 30. • Target functions invariant w.r.t. cyclic group. • Degeneracy $\alpha = 1$, hence save factor d in sample size. • $f_{\text{lin}} = \sum_{i \le d} x_i, \ f_{\text{quad}} = \sum_{i \le d} x_i x_{i+1}, \ f_{\text{cube}} = \sum_{i \le d} x_i x_{i+1} x_{i+2}.$ Cyclic quadratic target, d = 30Cyclic cubic target, d = 301.0 0.8 -0.8 -0.6 + 0.6 -0.4 + 0.4 -0.2 + 0.2 -1.0 1.5 2.0 1.5 1.0log(*n*)/log(*d*) $\log(n)/\log(d)$

Figure 1: Normalized test error of KRR with cyclic vs standard kernels.

Bibliography

[1] Z. Li, R. Wang, D. Yu, S. S. Du, W. Hu, R. Salakhutdinov, and S. Arora.

Generalization error of random features and kernel methods: hypercontractivity and kernel matrix