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Introduction

• In many learning tasks, the data present some natural
symmetries (e.g., labels are invariant under translation of
the images in image recognition tasks).
•One important goal of machine learning has been to design
predictive models that take advantage of these
symmetries to make a more efficient use of data.
• For instance, convolutional networks are believed to
owe their success to their ability to encode translation
invariance.
•Empirically, models that exploit invariances perform better
that models that do not.

Focus of this work:

Quantifying the performance gain of using invariant
architectures over non-invariant ones in random features

and kernel models.

Setting and models

•Data: x ∼ Unif(Ad), Ad = Sd−1(
√
d) or Ad = {−1,+1}d.

• Invariance group: Gd subgroup of orthogonal group
O(d) (that preserves the hypercube if Ad = {−1,+1}d).
•Goal: learn a Gd-invariant function f?

i.e., f?(g · x) = f?(x) for all g ∈ Gd,
given iid samples {yi,xi}i≤n with xi ∼iid Unif(Ad) and

yi = f?(xi) + εi, E[εi] = 0, E[ε2
i ] ≤ τ 2.

Models:
•Random Features models: (

√
dwi) ∼iid Unif(Ad)

fixed,

f̂RF(x; a) =
N∑
j=1

ajσ(〈wj,x〉)

→ f̂ inv
RF (x; a) =

N∑
j=1

aj

∫
Gd
σ(〈wj, g·x〉) πd(dg),

where πd is the Haar measure on the group Gd.
Fit the coefficients with Ridge Regression (RFRR):

âinv(λ) = arg min
a∈RN


n∑
i=1

(
yi − f̂ inv

RF (xi; a)
)2

+ Nλ‖a‖2
2

 .
•Kernel models: inner-prod. kernel H(x, z) = h

(
〈x,z〉
d

)
,

→ H inv(x, z) =
∫
Gd
h(〈x, g·z〉/d) πd(dg).

Fit the function with Kernel Ridge Regression (KRR):

f̂ inv
λ = arg min

f̂∈Hinv


n∑
i=1

(
yi − f̂ inv(xi)

)2
+ λ‖f̂ inv‖2

Hinv

 .

Example: 2-layer CNN

•The cyclic group Gd = {g0, g1, . . . , gd−1}:
gi · x = (xd−i+1, xd−i+2, . . . , xd, x1, x2, . . . , xd−i).

•Cyclic invariant RF model:

f inv
RF (x; a) = 1

d

N∑
j=1

aj
d∑
k=1

σ(〈wj, gk·x〉).

2-layers CNN with global average pooling & filters wj ∈ Rd.
• Inner-prod. kernel: NTK of fully-connected NNs; vs Cyclic
invariant kernel: NTK of 2-layer CNN with global pooling.
→ performance gap FC-NN vs. CNN in kernel regime.

Degeneracy of the invariance group

• Identify degeneracy of Gd as the measure of the approx.
and generalization power gain of using invariant models.
• Vd,k: subspace of degree-k polynomials orthogonal to
degree-(k − 1) polynomials in L2(Ad).
• Vd,k(Gd): subspace of Vd,k of Gd-invariant polynomials.

Groups of degeneracy α ∈ R≥0

Gd has degeneracy α if for any k ≥ α, we have
dim(Vd,k)/ dim(Vd,k(Gd)) � dα.

• dα: ‘effective dimension’ of the action of the group.
•α = 1 for cyclic group.
•Not necessarily equal to the size of Gd: e.g., translation
invariance on band-limited signals Sftd = {gu, u ∈ [0, 1]}

gu · x = (x1, cos(2πu)x2 + sin(2πu)x3, . . .).
Sftd has degeneracy α = 1.

Counting invariant polynomials
• {Yks}s≤Bd,k

orthonormal basis of Vd,k (Bd,k = dim(Vd,k)).
• {Y ks}s≤Dd,k

orth. basis of Vd,k(Gd) (Dd,k = dim(Vd,k(Gd)).
•Gegenbauer polynomial on Ad of degree-k:

Qk(〈x, z〉) = 1
Bd,k

∑
s≤Bd,k

Yks(x)Yks(z).

Representation lemma

Lemma 1 ([3])We have
1

Dd,k

∑
s≤Dd,k

Y ks(x)Y ks(z) = Bd,k

Dd,k

∫
Gd
Qk(〈x, g·z〉) πd(dg).

•To compute degeneracy, it is sufficient to show for all k ≥ α:

Ex∼Unif(Ad)

[∫
Gd
Qk(〈x, g·z〉) πd(dg)

]
= Dd,k

Bd,k
= Θd(d−α).

Test error of invariant models

• Let f? be Gd-invariant with Gd group of degeneracy α.
•Test error with square loss:

R(f?,X,W , λ) = Ex

{(
f?(x)− f̂RF(x; â(λ))

)2
}
.

Test error of RFRR

Theorem 1 ([3])Assume max(N/n, n/N) ≥ dδ and
λ = Od(1 ∨ (N/n)), σ stisfies some conditions, then:
• (Standard RF) If d`+δ ≤ min(N, n) ≤ d`+1−δ,

R(f?,X,W , λ) = ‖P>`f?‖2
L2 + od,P(·).

• (Invariant RF) If d`+δ/dα ≤ min(N, n) ≤ d`+1−δ/dα,
Rinv(f?,X,W , λ/dα) = ‖P>`f?‖2

L2 + od,P(·).
P>`: projection orthogonal to the space of degree-` polynomials.

•RFRR learns the best degree-` polynomial approx. to f?.
• Same result for KRR as above with N =∞: invariant KRR
saves a factor dα in sample size compared to standard KRR.

Invariant RF saves a factor dα in sample size and number
of hidden units to achieve same test error as std. RF.

Assumptions on σ

•Results: consequence of a general framework in [2].
•Technical general conditions of [2] checked for
• Cyclic group and σ assumed (` + 1)-differentiable.
• General groups of degeneracy α and σ polynomial.
•Deferred weaker conditions to future work (if σ diff., our
proof techniques generalize to subgroups of permutations).

Symmetrization and data augmentation

Compare 4 approaches to learning invariant models:
(a)Standard KRR: with inner-prod. kernel.
(b) Invariant KRR: with invariant kernel (‘intrinsic

approach’: invariance directly enforced in the model).
(c)Output symmetrization: take f̂λ solution of standard

KRR and symmetrize it:

f̂ inv
λ (x) :=

∫
Gd
f̂λ(g·x) πd(dg).

Does not significantly improve on standard KRR.
(d)Full data augmentation: add {(yi, g · xi)}i≤n,g∈Gd to

the training set with standard KRR.
⇒ this is equivalent to invariant KRR [1].

Test errors: (b) = (d)� (c) ≈ (a).

Sketch of the proof for KRR

• Inner-prod. kernels have eigenspaces Vd,k:

Hd(x, z) =
∞∑
k=0

ξ2
d,k

∑
s≤Bd,k

Yks(x)Yks(z).

• Space Vd,k is preserved under the action of Gd:

H inv
d (x, z) =

∞∑
k=0

ξ2
d,k

∑
s≤Dd,k

Y ks(x)Y ks(z).

•H inv
d has the same eigenvalues ξ2

d,k = Θd(d−k) as Hd but
with degeneracy lower by a factor Bd,k/Dd,k = Θd(dα).

•Theorem [2]: kernel eigenval. {λd,k} in decreas. order,
eigenvect. {ψk} + technical conditions. Let m ∈ N s.t.

λd,m+1 · n1+δ ≤
∑

k≥m+1
λd,k, m ≤ n1−δ.

Define seff = λ +∑
k≥m+1 λk.

Then KRR acts as shrinkage operator, i.e.,

f̂λ(x) ≈
∑
k≥1

λd,k
λd,k + seff/n

· 〈f?, ψk〉L2 · ψk(x).

Learn eigendirection if λd,k � seff

n , not at all if λd,k �
seff

n .

•Std KRR: m = #{Yks}k≤` = Θd(d`), seff = Θd(1). Hence
if d`+δ ≤ n ≤ d`+1−δ, learns degree-` polynomial approx.

• Inv KRR: m = #{Y ks}k≤` = Θd(d`−α), seff = Θd(d−α).
Hence if d`−α+δ ≤ n ≤ d`+1−α−δ, learns degree-` approx.

Numerical illustration

•Data x ∼ Unif(Sd−1(
√
d)) with d = 30.

•Target functions invariant w.r.t. cyclic group.
•Degeneracy α = 1, hence save factor d in sample size.
• flin = ∑

i≤d xi, fquad = ∑
i≤d xixi+1, fcube = ∑

i≤d xixi+1xi+2.

1.0 1.5 2.0
log(n)/log(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

 e
rro

r (
no

rm
al

ize
d)

Cyclic linear target, d = 30
standard kernel
cyclic kernel

1.0 1.5 2.0
log(n)/log(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Cyclic quadratic target, d = 30

1.0 1.5 2.0
log(n)/log(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Cyclic cubic target, d = 30

Figure 1: Normalized test error of KRR with cyclic vs standard kernels.
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