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Introduction

e In many learning tasks, the data present some natural
symmetries (e.g., labels are invariant under translation of

the images in image recognition tasks).

e One important goal of machine learning has been to design
predictive models that take advantage of these
symmetries to make a more efficient use of data.

e For instance, convolutional networks are believed to
owe their success to their ability to encode translation
Invariance.

e Empirically, models that exploit invariances perform better
that models that do not.

Focus of this work:

Quantifying the performance gain of using invariant

architectures over non-invariant ones in random features
and kernel models.

Setting and models

e Data: = ~ Unif(Ay), Ag =S '(V/d) or Ag={—1,+1}%

e Invariance group: G, subgroup of orthogonal group
O(d) (that preserves the hypercube if Ay = {—1, +1}9).

e (zoal: learn a Gg-invariant function f,

Song Meij !

Example: 2-layer CNN
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e The cyclic group G = {g0, 91, - - -
gi " ® = (Td—it1, Td—it2; - - - L L)

e Cyclic invariant RF model:

N d
R (5a) = Z%ZO w;, G-

3:1 k=1

2-layers CNN with global average pooling & filters w; € R,

e Inner-prod. kernel: NTK of fully-connected NNs; vs Cyclic
invariant kernel: NTK of 2-layer CNN with global pooling.
— performance gap FC-NN vs. CNN in kernel regime.

Degeneracy of the invariance group

e [dentify degeneracy of G, as the measure of the approx.
and generalization power gain of using invariant models.

o V1t subspace of degree-k polynomials orthogonal to
degree-(k — 1) polynomials in L*(Ayg).
o V11(Gq): subspace of V. of Gg-invariant polynomials.

Groups of degeneracy a € Ry

G4 has degeneracy « if for any £ > «, we have

dim(Vd7k)/ dim(Vd,k(Qd)) = d“.

e d“: ‘effective dimension’ of the action of the group.
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Test error of invariant models

e Let f, be Gy-invariant with G, group of degeneracy a.

e Test error with square loss:

R(fo X, W.A) = Eof (fula) — fre(@:a(\))

Test error of RFRR

Theorem 1 ([3]) Assume max(N /n,n/N) > d° and
A= 041V (N/n)), o stisfies some conditions, then.:

o (Standard RF) If d*° < min(N,n) < d"*19,

R(fo, X, W, A) = [|Poofullz2 + 0ap():
o (Invariant RF) If d*°/d* < min(N,n) < d*1=°/d,
R™(fus X, W, A/d") = ||Pos ful[72 + 0ap(:).

P-y: projection orthogonal to the space of degree-f polynomials.

e RFRR learns the best degree-¢ polynomial approx. to f,.

e Same result for KRR as above with NV = oo: invariant KRR
saves a factor d“ in sample size compared to standard KRR.

Invariant RF saves a factor d“ in sample size and number

of hidden units to achieve same test error as std. RF.

Assumptions on o

e Results: consequence of a general framework in |2].
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Sketch of the proof for KRR

e Inner-prod. kernels have eigenspaces Var:

5<Bdk:

® Space Vi is preserved under the action of G,
Z&dk Y Yis(@)Yis(2).
8<de

 H™ has the same eigenvalues &5, = ©q(d™") as Hg but
W1th degeneracy lower by a factor Bax/Dgi = ©4(d*).

® Theorem [2]: kernel eigenval. {\;} in decreas. order,
eigenvect. {1} + technical conditions. Let m € N s.t.
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Then KRR acts as shrinkage operator, i.c.,
Ad
f)\(CIZ) ~ Z 7 ' <f*7 ¢k>L2 ' ¢k<x)

ff
=1 >\d,k + s°¢ /n

efF efF

Learn eigendirection if Agy > %~ not at all if Agp < =

e Std KRR: m = #{Yks}kgé — @d<d€), Se‘Cf — @d(l). Hence
if 40 <mn < d710 learns degree-¢ polynomial approx.

oInv KRR: m = #{Y s e = Og(d' ™), s = Oy4(d™).
Hence if d=% < n < d1727% learns degree-¢ approx.
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- o) e o = 1 for cyclic group. | g
Le., fulg-x) = fulz) for all g € Gy, e Not necessarily equal to the size of Gy e.g.. translation o Techmcal general conditions of [2] checked for Numerical illustration
given iid samples {y;, €; }i<, with x; ~;;q Unif(A,) and . . S | d- 5 e Cyclic group and o assumed (¢ + 1)-differentiable.
= . B2 < 2 invariance on band-limited signals Sfty = {g,,u € |0, 1]} o Ceneral groups of degeneracy a and o polynomial. .
= [{@) + e el =0, Elg] <7 Gy - T = (1, cos(2mu)xy + sin(2mu)xs, . . ). o Deferred weaker conditions to future work (if o diff., our * Data @ ~ Unif (S*"!(v/d)) with d = 30.
Models: Sfty has degeneracy o = 1 proof techniques generalize to subgroups of permutations). e Target tunctions invariant w.r.t. cyclic group.
« Random Features models: ( Jdw ) Unif(A,) e Degeneracy a = 1, hence save factor d in sample size.
: ) ~iid d . . .
fived v Counting invariant polynomials Symmetrization and data augmentation ® fiin = 2i<d Tir fquad = 2oi<d TiTit1, feube = 2icd TiTit1Tis2.
N . ) ) Cyclic linear target, d = 30 Cyclic quadratic target, d = 30 Cyclic cubic target, d = 30
fRF(iU‘ a) = Z a;io({(w;, x)) ® {Yis}s<p,, orthonormal basis of Vi (Bgr = dim(Vgz)). Compare 4 approaches to learning invariant models: : == Staidard ] o = = ]
7 B J J? V4 - : : R A T cyclic kernel 7] 10T
j=1 o {Yks}sng’k orth. basis of V;£(Gq) (Dar = dim(Vy.(Ga)). (a) Standard KRR: with inner-prod. kernel. g 0: - orelck | ! O:
. = 0.8- | 5
_ fmv(w. a) = g: q / (w;, g-x)) ma(dg), e Gegenbauer polynomial on Ad of degree-k: (b) Invariant KRR: with invariant kernel (‘intrinsic EO_G_ | oed
| — 7 Jg, 7’ approach’: invariance directly enforced in the model). 2 e } 0
I |
= |
|

where 7, is the Haar measure on the group G, .
Fit the coefficients with Ridge Regression (RFRR):

A 1NV : & nv 2
@™ () = arg min {z(y@- it (z:a)) +NAa%}.

1=1

e Kernel models: inner-prod. kernel H(x, z) = h (<w’z>),

| h((@.g-2)/d) mu(dg).

Fit the function with Kernel Ridge Regression (KRR):

2 .
%mv .

— H"™(x,z) =

fe’}_[inv

N n N 9 N
A = arg min {Z (yz - f””(wz-)) + AL
1=1

e To compute degeneracy, it is suflicient to show for all £ > «a:

D
— ek _ @d(d_&).

EeUnif( 4, [/ngk(<33, g-z)) Wd(dg)] Bay.

(c) Output symmetrization: take f) solution of standard

KRR and symmetrize it:

V(@)= [ flg@)mldg).

Does not significantly improve on standard KRR.

(d) Full data augmentation: add {(y;, g ®;) }i<n 4eg, t0
the training set with standard KRR.
= this is equivalent to invariant KRR [1].

Test errors:
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Figure 1: Normalized test error of KRR with cyclic vs standard kernels.
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