
A Short Tutorial on the
Computational Complexity of Deep Learning

[Unfinished draft]

Theodor Misiakiewicz1

August 22, 2025

1Department of Statistics and Data Science, Yale University

2

Abstract

These lecture notes are based on lectures given by T. M. at the Princeton
Machine Learning Theory Summer School (2025). We thank Boris Hanin for
organizing this wonderful summer school.

These notes are currently at the stage of a draft. Please do not distribute.

3

4

Contents

1 Introduction 7
1.1 Supervised learning . 8
1.2 Hypothesis classes and running examples 12

1.2.1 Learning Gaussian single-index models 13
1.2.2 Learning sparse functions on the hypercube 14

1.3 Hardness of training neural networks 15
1.4 Proper versus improper learning 19
1.5 Hardness of improper learning 24
1.6 Restricted models of computation 28

2 Kernel methods 31
2.1 Feature space and RKHS . 32
2.2 Kernel methods and the kernel trick 37
2.3 Dimension lower bounds . 40
2.4 Examples . 45

2.4.1 Gaussian single-index models 46
2.4.2 Sparse functions on the hypercube 52
2.4.3 Summary . 57

3 Noisy gradient descent 61
3.1 Noisy gradient descent . 61
3.2 Lower bound via junk flow . 64
3.3 Proofs of auxiliary lemmas . 67
3.4 Examples . 71

3.4.1 Gaussian single-index models 71
3.4.2 Sparse functions on the hypercube 75

4 Statistical Query algorithms 83
4.1 Basic model and definitions 84

5

6 CONTENTS

4.2 Correlation Statistical Queries 91
4.3 Lower bounds via Statistical Dimension 100
4.4 SQ and noisy gradient descent 107
4.5 Examples . 112

4.5.1 Gaussian single-index models 112
4.5.2 Sparse functions on the hypercube 112

5 Low-degree polynomials 113
5.1 Background on hypothesis testing 114
5.2 Low-degree polynomials . 121

5.2.1 Discussion on the low-degree conjecture 126
5.3 Example: Gaussian single-index models 126

Bibliography 128

A Technical results 141
A.1 Function space on the sphere 141
A.2 Gaussian single-index models 147

A.2.1 Dimension lower bound 148
A.2.2 Alignment complexity 152

Chapter 1

Introduction

In these lectures, we explore foundational concepts and recent developments
on the computational complexity of Deep learning—and more broadly, ma-
chine learning. My primary goal is to introduce systematic approaches for
understanding the computational complexity in statistical learning tasks,
with an emphasis on techniques for establishing computational lower bounds.
Rather than a comprehensive treatment, these lectures are structured as a se-
ries of vignettes, highlighting key intuitions, central ideas, and formal frame-
works essential for deriving these lower bounds. Throughout, I will provide
references for students interested in delving deeper into specific topics.

One might ask: Why emphasize lower bounds? Isn’t that too gloomy
an outlook on life? Perhaps. However, lower bounds serve a crucial role
in theoretical machine learning. They clarify inherent difficulties in learn-
ing tasks—irrespective of the algorithm—, provide ‘yardsticks’ against which
we compare our learning algorithms, identify fundamental tradeoffs between
resources (e.g., sample vs. computation), and formalize “no free lunch” by
quantifying what assumptions are necessary for learning. Given the intricacy
of deep learning methods, focusing on lower bounds enables us to abstract
complex implementation details and concentrate on some essential aspects of
learning problems. This, in turn, provides crucial insights into the underlying
principles that determine effective learning and algorithm design.

By pursuing this perspective, we will touch upon several foundational and
contemporary topics in machine learning theory, including:

• Proper versus improper learning, generalization-computation trade-offs,
and how overparametrization can affect tractability.

• Adaptive (‘feature learning’) versus non-adaptive (‘fixed feature’ or ker-

7

8 CHAPTER 1. INTRODUCTION

nel) methods.

• Statistical-to-computational gaps and the inherent trade-offs between
runtime efficiency and sample complexity.

• Key frameworks for capturing learning hardness: reductions, junk flow,
Statistical Query algorithms, and Low-Degree Polynomials.

Outline. The classical approach to establishing computational hardness re-
lies on reductions from problems presumed hard under standard complex-
ity assumptions (such as P ̸= NP or cryptographic hardness). This will be
the subject of Chapter 1. However, such reductions are often difficult—or
even impossible—to apply in statistical settings that emphasize average-case
rather than worst-case hardness—that is, hardness with high probability over
random problem instances. Over the past few decades, alternative frame-
works have been developed to prove lower bounds for restricted classes of al-
gorithms. These approaches are typically easier to implement, yield sharper
predictions, and apply broadly to many problems. In the rest of these lec-
tures, we will present lower bounds on kernel methods (Chapter 2), noisy
gradient descent (Chapter 3), Statistical Query (SQ) algorithms (Chapter
4), and Low-Degree Polynomial (LDP) algorithms (Chapter 5).

Notations. Throughout these notes, we denote PX the marginal distribution
of the covariate vector x ∈ X . We further denote P(Z) the space of prob-
ability distributions over the (measurable) space Z, and L2(D) the space of
squared-integrable functions with respect to D ∈ P(Z), with inner-product

⟨f, g⟩L2(D) = Ez∼D[f(z)g(z)], for all f, g ∈ L2(D), (1.0.1)

and norm ∥f∥L2(D) = ⟨f, f⟩1/2L2(D). For notational simplicity, we will write

⟨·, ·⟩D—or simply ⟨·, ·⟩L2 when D is clear from context—instead of ⟨·, ·⟩L2(D).

1.1 Supervised learning

We focus on the standard supervised learning problem where we are given
a collection of n data points {(yi,xi)}i≤n ∼iid D with xi ∈ X the vector of
covariates, yi ∈ Y the response or label, and D ∈ P(Y × X) an unknown

probability distribution. The goal is to learn a model f̂ : X → Y (also known

1.1. SUPERVISED LEARNING 9

as a predictor) such that, given a new covariate vector xnew, it predicts the

response ynew via f̂(xnew). The performance of the model is measured by a
test error (also known as population risk)

R(f̂ ;D) = E(ynew,xnew)∼D

[
ℓ
(
ynew, f̂(xnew)

)]
, (1.1.1)

where ℓ : Y × Y → R≥0 is a loss function.

Example 1.1.1. For concreteness, we will often assume that X = Rd, Y =
R, and that the data (y,x) ∼ D is generated via

y = h∗(x) + ε, (1.1.2)

where h∗ ∈ L2(PX) is the target or regression function and ε is an indepen-
dent label noise E[ε] = 0, E[ε2] = σ2ε , so that h∗(x) = ED[y|x]. In this case,
we will focus on the squared loss ℓ(y, ŷ) = (y − ŷ)2, and refer to this setting
as the regression setting.

In the classification setting, the label y takes discrete values. In this case,
we will assume Y = {−1,+1} and focus on the 0-1 loss ℓ(y, ŷ) = 1[y ̸= ŷ],

so that R(f̂ ;D) = P(y,x)∼D[y ̸= f̂(x)]—the probability of correctly predicting

the label. When f̂ is real-valued, we will simply identify ŷ = sign(f̂(x)).

Sometimes, it will be convenient to subtract from the test error the Bayes
risk—that is, the minimum test error achievable by any predictor. This is
known as the excess test error or excess risk :

Rexc(f̂ ;D) = R(f̂ ;D)− inf
f :X→Y

R(f ;D). (1.1.3)

In the case of squared loss, the excess risk is simply

Rexc(f̂ ;D) = Ex∼PX

[(
h∗(x)− f̂(x)

)2]
= ∥h∗ − f̂∥2PX

, (1.1.4)

where h∗(x) = E[y|x] is the regression function.

Parametric model class. We restrict the model f̂ is chosen restricted to
lie in a parametric family of models

f̂ ∈ F = {x 7→ f(x;θ) : θ ∈ Rp},

10 CHAPTER 1. INTRODUCTION

where θ ∈ Rp is the vector of parameters. For example,

f(x;θ) =
M∑
i=1

aiσ(⟨wi,x⟩+ bi), (1.1.5)

with θ = (a1, . . . , aM , b1, . . . , bM ,w1, . . . ,wM) ∈ RM(d+2). Then, F is the
class of two-layer neural networks withM neurons and activation σ : R→ R.
With a slight abuse of notation, we will write R(θ;D) := R(f(·;θ),D), or
simply R(θ) when D is clear from context.

Empirical Risk Minimization (ERM). Our goal is to learn a model
f(·,θ) that minimizes the population risk (1.1.1). We do not have access
to D, only to the n training data points {(yi,xi)}i≤n. Thus, a standard ap-
proach consists in approximating the population riskR(θ;D) by the empirical

risk R̂n(θ), and fitting θ̂ ∈ Rp by minimizing :

θ̂ := argmin
θ∈Rp

R̂n(θ) + r(θ), R̂n(θ) :=
1

n

n∑
i=1

ℓ(yi, f(xi;θ)), (1.1.6)

where we include a possible regularizer r : Rp → R≥0—e.g., r(θ) = λ∥θ∥22.

Gradient descent. Generically, θ̂ does not admit a closed form expres-
sion. Instead, modern machine learning attempts to construct approximate
minimizers of this empirical risk using gradient-type algorithms (first order
methods). The simplest is gradient descent (GD), which, starting from a
(random) initialization θ0 ∈ Rp, iteratively update the parameters as

θk+1 = θk − ηk∇θ(R̂n(θ
k) + r(θk)). (1.1.7)

In practice, stochastic gradient descent (SGD) with small batch is preferred:
at each step, b data points {(yi,xi)}i∈Ik with Ik ⊂ [n], |Ik| = b, are chosen
uniformly at random from the training data set and

θk+1 = θk − ηk
b

∑
i∈Ik

∇θℓ(yi, f(xi;θ
k))−∇θr(θ

k). (1.1.8)

Performance of predictors. In these lectures, we will be interested in
understanding when this basic ‘pipeline’ fails to achieve good prediction—
that is, when it fails to attain low test error. Broadly speaking, there are
three factors that limit the performance of a trained model f(·, θ̂):

1.1. SUPERVISED LEARNING 11

• Expressivity: The function class f(·,θ) might not be expressive enough
to model the true input-output relationship (y,x) ∼ D. However, in
modern practice, we typically use highly complex neural networks that
are extremely expressive. As a result, we will largely ignore this issue
(see Section 1.4 for a discussion on the role of overparameterization).

• Sample size: The training dataset may be too small for the empirical
risk R̂n(θ) to serve as an accurate proxy for the population risk R(θ)
over F . The trained model might not generalize beyond the training
set to new unseen examples.

• Runtime: Even when sufficient data is available, learning a good
model may be computationally infeasible. When considering neural
networks, the empirical risk minimization problem (1.1.6) is highly
non-convex, and there is no guarantee that gradient descent (1.1.7)
will converge to a global minimizer—or to a sufficiently good solution.

These lectures focus on the third factor: the computational complexity of
supervised learning. There are several reasons for emphasizing this limitation,
and we list three below:

1. The statistical aspects of learning are comparatively better understood,
with mature theories such as uniform convergence (e.g., [SSBD14, BFT17,
SH20]) and minimax theory (e.g., [Wai19, Chapter 15]).

2. Being computationally efficient is a more stringent requirement than
being statistically efficient, simply because runtime grows at least lin-
early in the number of samples. In fact, many problems display so-called
Statistical-Computational gaps, that is, they exhibit regimes where learn-
ing is information-theoretically possible, yet no known polynomial-time
algorithm succeeds. See [Wei25] for a nice overview of this phenomenon
through the lens of the low-degree polynomial framework.

3. In many respects, the success of deep learning presents a computa-
tional mystery rather than a statistical mystery. We refer to [BCF+24,
GKK+24] for discussions. Furthermore, classical statistical learning
theory—based on i.i.d. samples and function approximation—fails to
capture many aspects of modern practice, where data is often curated,
mixed with synthetic data, or presented in a curriculum-like sequence.

12 CHAPTER 1. INTRODUCTION

In the remainder of these lectures, our focus will be on developing tech-
niques to establish lower bounds on the computational complexity of the
supervised learning problem. At this stage, we have not precisely defined
what we mean by computational complexity, and in fact, the notion will vary
depending on the context. Broadly speaking, you can think of it as the run-
time required for an algorithm to succeed—measured in terms of the number
of elementary operations it performs—and how this runtime scales with var-
ious problem parameters (e.g., input dimension, accuracy, etc.). Each lower
bound framework we study will rely on a different proxy for computational
complexity (sample size, number of gradient steps, number of queries, or de-
gree of the polynomial). In each case, we will clearly state what notion of
complexity is being bounded and under what assumptions.

1.2 Hypothesis classes and running examples

Before proceeding, let us make one final—but essential—remark. To mean-
ingfully define a learning lower bound against broad classes of algorithms, we
must consider a family of learning problems. That is, we consider a hypoth-
esis class H ⊆ P(Y × X), where each D ∈ H is a possible data-generating
distribution, and require that our algorithms succeed on all—or most of—
these distributions. Otherwise, the learning problem is not well defined: if
H = {D0} is a singleton, then a trivial algorithm that simply outputs D0—
without observing any data—solves the problem in zero samples and constant
time. Hence, nontrivial lower bounds require some form of uncertainty about
the underlying distribution to be learned.

In some cases, with input marginal PX fixed and shared by all D ∈ H,
the algorithm might only access the data through the regression function
h = ED[y|x]. In this case, we can identify D ∈ H with its target functions h,
and with a slight abuse of notations, directly consider H ⊆ {h : X → Y} as
a set of functions.

Throughout these lectures, we will consider two running examples of hy-
pothesis classes to illustrate and compare each lower bound. Namely, we
consider learning Gaussian single-index models and sparse functions on the
hypercube.

1.2. HYPOTHESIS CLASSES AND RUNNING EXAMPLES 13

1.2.1 Learning Gaussian single-index models

Let X = Rd and Y = R. Given a target function f∗ : R → R such that
E[f∗(G)2] <∞, G ∼ N (0, 1), we consider the hypothesis class

H(d)
f∗,SI

:= {Df∗,w : w ∈ Sd−1}, (1.2.1)

(here, Sd−1 = {w ∈ Rd : ∥w∥2 = 1} denotes the unit sphere in d dimensions)
where (y,x) ∼ Df∗,w is generated as1

y = f∗(⟨w∗,x⟩) + ε, with x ∼ N (0, Id), and ε ∼ N (0, σ2ε). (1.2.2)

In other words, the response y only depends on x through its one-dimensional
projection ⟨w∗,x⟩. For simplicity, we will keep the dependency on f∗ and

simply write H(d)
SI and Dw when clear from context.

The distribution Dw is a simple example of a generalized linear model
[McC84, BKM+19]. It is also often called a single-index model—the label y

only depends on one ‘index’ ⟨w,x⟩ of the input data. We will refer to H(d)
SI

as the class of Gaussian single-index models.
When fixing f∗ and σε, this naturally induces a sequence of hypothesis

classes indexed by d. We will be interested in understanding the complexity

of learning H(d)
SI as d→∞. Information-theoretically, n = Θd(d) is necessary

and sufficient to learn this family. However, we will see that in order to have
a polynomial-time algorithm (polynomial in d) that solves this problem, one
needs n = Θd(d

kG/2) samples, where kG is the generative exponent of f∗
[DPVLB24]. Thus, these models display a Statistical-Computational gap
where, if d ≲ n ≪ dk∗/2, learning is information theoretically possible, but
computationally hard.

For convenience, we will denote γd := N (0, Id) and γ̄d := Unif(Sd−1).

Remark 1.2.1 (Unknown link function). Here, learning H(d)
SI amounts to

recovering the vector w∗ ∈ Sd−1. This corresponds to a Bayesian setting
where the only unknown is the support direction. If instead f∗ is only partially
known, that is, if we only know that f∗ ∈ L ⊆ {f : R→ R}, e.g., the class of
1-Lipschitz functions, then we could consider instead

H =
⋃
f∗∈L

H(d)
f∗,SI

=
{
Df∗,w : w ∈ Sd−1, f∗ ∈ L

}
.

1There is no added difficulty when considering a general link function y|x ∼ ρ(·|⟨w∗,x⟩) where ρ ∈
P(R× R) with (Y,G) ∼ ρ and G ∼ N (0, 1).

14 CHAPTER 1. INTRODUCTION

However, (1) lower bounds will be driven by the most difficult subset H(d)
f∗,SI

,

and (2) when d → ∞ (high-dimensional regime), the complexity of learning
these distributions will be dominated by recovering the support direction (L
is dimension independent). Thus, we will not explore this direction and only
consider settings where f∗ is fixed, known.

1.2.2 Learning sparse functions on the hypercube

Let X = {−1,+1}d be the discrete hypercube in d dimensions, and Y = R.
Fix an integer P ∈ N. Given a target function f∗ : RP → R, we consider the
hypothesis class

H(d)
Sp := {DS : S ∈ P([d], P)}, (1.2.3)

where P([d], P) is the set of size-P ordered subset of [d], and (y,x) ∼ DS∗ is
generated as2

y = f∗(xS∗) + ε, with x ∼ Unif({±1}d), and ε ∼ N (0, σ2ε). (1.2.4)

where we denote xS∗ = (xi)i∈S∗ ∈ {±1}P . In other words, the response y only
depends on P ‘active’ coordinates xi, i ∈ S∗, and is independent of the rest of

the input coordinates. We will refer to H(d)
Sp as the class of sparse functions

on the hypercube. Note that learning H amounts to recovering the (ordered)
support S∗ ∈ P([d], P) (see Remark 1.2.1).

Again, when fixing f∗ and σε, this induces a sequence of hypothesis classes
indexed by d, and we will be interested in understanding the complexity of

learning H(d)
Sp as d → ∞. In this case, n = Θd(log(d)) is necessary and

sufficient to learn this family in polynomial time (there is no Statistical-
Computational gap). Indeed consider the following simple algorithm:

1. For each ordered subset S ∈ P([d], P), compute T̂S = Ên[yf∗(xS)], the
empirical average over n samples.

2. Output Ŝ = argmaxS T̂S.

By union bound, if n = Θd(log(d)), then
3 Ŝ = S∗ with high probability, and

the algorithm runs in time O(ndP).

2Again, there is no added difficulty when considering a general link function y|x ∼ ρ(·|xS) where ρ ∈
P(R × {±1}P) with (Y,X) ∼ ρ and X ∼ Unif({±1}P). Furthermore, all the results on learning sparse
functions in these notes will generalize straightforwardly from uniform on the hypercube to general product
distributions on Rd.

3Note that if f∗ has internal symmetries, that is f∗(xS) = f∗(xS′) for S ̸= S′, we can only recover S up
to these symmetries.

1.3. HARDNESS OF TRAINING NEURAL NETWORKS 15

Instead, we will see that no known algorithm exists that solves this prob-
lem with less than Θd(d

kg) runtime, where kg is the generative leap exponent of
f∗ [JMS24]. For example, the parity function f∗(xS∗) =

∏
i∈S∗

xi has kg = P :

in this case, the lower bound Θd(d
P) matches the runtime of the brute force

algorithm described above, which is optimal here.
If P := P (d) is allowed to grow with d, then enumerating all possible

supports will have superpolynomial runtime. In that case, n = Θd(P log(d))
is information-theoretic optimal4, but only (sequences of) functions that have
generative leap exponent uniformly bounded by a constant will be learnable
in polynomial time. We will discuss simple examples with P := P (d), but
otherwise, we will keep P (and f∗) fixed.

For convenience, we will denote νd = Unif({±1}d).

1.3 Hardness of training neural networks

We start by presenting the landmark result of Blum and Rivest (1988) [BR88]
which showed that training even tiny neural networks is NP-complete. Under
the assumption that P ̸= NP, this imply that:

There is no polynomial-time algorithm that (unconditionally) min-
imizes the empirical risk (1.1.6) over neural networks.

To parse this statement, let us recall informally some basic definitions from
computational complexity theory (see, e.g., [AB09] for formal definitions):

Definition 1.3.1 (Informal, complexity theory primer).

• P: Class of decision problems that can be solved in polynomial time.

• NP: Class of decision problems whose (positive) solutions can be verified
in polynomial time.

• Polynomial-time reduction: A problem A is as hard as a problem B if
instances of B can be mapped to instances of A in polynomial time. A
polytime algorithm for A would then yield one for B. Conversely, if B
is not in P (no polytime algorithm solves B), then A is not in P.

4This requires additional assumptions as f∗ now depends on d.

16 CHAPTER 1. INTRODUCTION

x1

x2

x3

...

xd

N1

N2

N3

Figure 1.1: Three-node neural network with input x = (x1, . . . , xd), two
hidden nodes, and one output node, with the output of each nodes being
φi(z) = sign(⟨wi, z⟩+ bi).

• NP-complete: A problem A in NP is NP-complete if any problem in NP is
reducible to A in polytime. This means that A is as hard as any problem
in NP.

• P ̸= NP: If P ̸= NP, no NP-complete problem admits a polynomial-time
algorithm.

Blum and Rivest (1988) considered a 3-neuron neural network f(·,θ),
as depicted in Figure 1.1, with two hidden neurons and an output neuron,
and activation function σ(x) = sign(x). Given n data points {(yi,xi)}i≤n ∈
{±1} × {0, 1}d, consider the empirical risk minimization problem

min
θ

1

n

n∑
i=1

(yi − f(xi;θ))
2. (1.3.1)

If one can solve this minimization problem (within < 4/n of the true mini-
mizer), one can answer the following decision problem:

Q∗: Given a set of O(d) examples (yi,xi) with xi ∈ {0, 1}d and yi ∈ {±1},
does there exist a 3-neuron network that interpolates this data, i.e., that
achieves 0 training error?

1.3. HARDNESS OF TRAINING NEURAL NETWORKS 17

Theorem 1.3.2 ([BR88]). Training 3-neuron networks is NP-complete.

This result implies that if P ̸= NP, no algorithm can minimize the empirical
risk (and solve Q∗) in poly(d) runtime. The proof proceeds by reducing a NP-
complete problem to Q∗, thus making Q∗ NP-complete. Specifically, Blum
and Rivest considered the Set-Splitting problem.

Problem 1.3.3 (Set-Splitting). Given a finite set S and a collection of sub-
sets {Ci|Ci ⊂ S}, does there exist a partition S1, S2 ⊂ S with S1∩S2 = ∅ and
S1 ∪ S2 = S, such that Ci ̸⊆ S1 and Ci ̸⊆ S2 for all i?

Theorem 1.3.4 (Lovasz [GJ02]). Set-Splitting is NP-complete.

The reduction from Set-Splitting to Q∗ is quite short and I will outline
it below. I encourage the interested student to check the original proof in
[BR88]. The problem Q∗ can be decomposed into two cases: given a set of
n = O(d) examples (yi,xi)i∈[n],

(A) Does there exist an hyperplane separating the data? That is, are there
parameters (w, b) ∈ Rd+1 such that yi = sign(⟨w,xi⟩+b) for all i ∈ [n]?

(B) Does there exist two hyperplanes that split Rd in four quadrants such
that one quadrant contains all positive (resp. negative) labels and no
negative (resp. positive) labels?

If either happens, one can interpolates the data with a 3-neuron network and
Q∗ is true. If neither happens, no 3-neuron interpolates the data and Q∗ is
false. Case (A) corresponds to fitting a linear classifier and can be solved
in polynomial time, e.g., via the perceptron algorithm [Ros58]. Case (B)—
which we call Q̃∗—is the hard case. We show below that the Set-Splitting
problem reduces to Q̃∗.

We will use the following mapping from instances of the Set-Splitting
problem to instances of Q̃∗. Given a finite set S = {s1, s2, . . . , sp} and a
collection of subsets C = {C1, C2, . . . , Cm} with Ci ⊆ S. We convert this
instance into a set of d+ 1 data points in dimension d = p+m as follows:

• 1 data point at the origin x0 = 0 with label y0 = +1.

• p data points, one for each si ∈ S, with xi = ei (the one-hot vector
where the only non-zero entry is at the i-th index) and yi = +1.

18 CHAPTER 1. INTRODUCTION

• m data points, one for each subset Cj ∈ C, with

xCj
=
∑
i∈Cj

ej,

that is, (xCj
)i = 1 if and only if i ∈ Cj, and yCj

= −1.

Note that the last m coordinates are always 0: this padding guarantees
that the number of data points is always O(d).

Example 1.3.5. Consider S = {s1, s2, s3} and C = (C1, C2) with C1 =
{s1, s2} and C2 = {s2, s3}. The above construction maps this instance of
Set-Splitting to 6 data points in d = 5 with

• Label −1 at input vectors:

(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0).

• Label +1 at input vectors:

(0, 0, 0, 0, 0), (1, 1, 0, 0, 0), (0, 1, 1, 0, 0).

The following proposition shows that Q̃∗ is true on this data set if and
only if Set-Splitting is true on (S, C).

Proposition 1.3.6. This set of data points is separable by a quadrant if and
only if Set-Splitting admits a solution.

Proof. Step 1: Set-Splitting is true implies Q̃∗ is true. Assume that
there exist two subsets S1, S2 ⊆ S such that S1 ∪ S2 = S, S1 ∩ S2 = ∅, and
for all j ∈ [m], Cj ̸⊆ S1 and Cj ̸⊆ S2.

Consider the two vectors wj ∈ Rd, j ∈ {1, 2} with

wji =

{
−1 if si ∈ Sj,

d otherwise.

Let P1 and P2 be the two halfspaces given by Pj = {⟨wj,x⟩ + 1/2 ≥ 0},
j ∈ {0, 1}. It is straightforward to verify that

sign(⟨wj,x⟩+ 1/2) =


+1 if x = x0 = 0,

+1 if x = xi = ei with si ̸∈ Sj,

−1 if x = xi = ei with si ∈ Sj,

+1 if x = xC with C ∈ C.

1.4. PROPER VERSUS IMPROPER LEARNING 19

Thus the quadrant obtained by intersecting P1 and P2 contains all the points
with label +1 and none of the the points with label −1.
Step 2: Q̃∗ is true implies Set-Splitting is true. Assume there exist
two halfspaces P1 and P2 such that their intersection separates the data. Let
S1 be the set of points with label −1 that are separated from 0 by P1. Let
S2 be the set of points with label −1 not in S1 that are separated from 0 by
P2. By construction, S1 ∩ S2 = ∅. Furthermore, S1 ∪ S2 = S as each x = ei
(associated to si) has label −1 and is separated by either P1 or P2 from the
origin (y0,x0) = (+1,0).

It remains to show that Cj ̸⊆ S1 and Cj ̸⊆ S2 for all Cj ∈ C. Let
Cj = {sj1, . . . , sjk} and recall that the points xj1, . . . ,xjk have label −1, while
the point xCj

= xj1 + . . . + xjk has label +1. If Cj ⊆ S1, then P1 separates
the origin 0 from every xj1, . . . ,xjk and thus, from xCj

which contradicts the
assumption that all +1 label are on one side of the hyperplane P1. The same
argument show that Cj ̸⊆ S2, which concludes the proof.

Thus, if an algorithm solves efficiently Q∗–and therefore Q̃∗—, then it
solves efficiently the Set-Splitting problem, which proves Theorem 1.3.2.

Blum and Rivest’s result was inspired by earlier work by Judd [Jud87]
who showed that deciding whether a neural network can correctly predict
two-thirds of the training samples is NP-complete (thus, even approximate
training is hard). However, Judd did not specify which networks are hard
to learn. The result of Blum and Rivest shows that even a simple 3-node
network is already hard to train (exactly). There has been several follow-up
works, including recent results that showed that hardness persists even in low
dimensions (d = 2) or if the linear threshold activation is replaced by a ReLu
[FH23].

1.4 Proper versus improper learning

Is Blum and Rivest’s hardness result—that no polynomial-time algorithm can
minimize the empirical risk—compelling? Indeed, their result holds under

• Worst-case over training data: The algorithm must solve ERM for
any collection of training samples {(yi,xi)}i≤n (at least, restricted to
binary valued data (y,x) ∈ {±1} × {0, 1}d).

• Fixed architecture: It is NP-complete to decide whether there exists
a three-node network that perfectly fits the data.

20 CHAPTER 1. INTRODUCTION

However, in machine learning, our goal differs in two crucial ways:

1. We are typically concerned with data drawn from an underlying dis-
tribution, and our algorithms only need to succeed on typical datasets,
i.e., with high probability over the training samples. This shifts the
focus from worst-case hardness to average-case hardness.

2. Our objective is not merely to decide whether a fixed architecture can fit
well the training data, but rather to construct a model that generalizes
well to new, unseen data.

In learning theory, the distinction in the second point corresponds to the
difference between proper learning (where the predictor must belong to the
same hypothesis class that generates the data) and improper learning (where
we allow the learner to output models in a much more expressive class). Let’s
informally recall their definitions (see [SSBD14] for details):

Definition 1.4.1 (Informal, proper versus improper learning). For simplic-
ity, consider the realizable setting and an hypothesis class H ⊂ {h : X 7→
{−1,+1}} (e.g., H is the set of all 3-nodes networks from Figure 1.1). Con-
sider the 0-1 loss ℓ : {±1} × {±1} → {0, 1} given by ℓ(y, ŷ) = 1[y ̸= ŷ].

(1) (Proper learning.) Given n data points {(yi,xi)}i≤n ∼iid D, where yi =
h(xi) for some h ∈ H, the algorithm outputs ĥ ∈ H such that

R(ĥ;D) = P[ĥ(x) ̸= h(x)] ≤ ε. (1.4.1)

(2) (Improper learning.) The algorithm is allowed to output ĥ ̸∈ H (e.g.,
from a much broader class of models) such that

R(ĥ;D) = P[ĥ(x) ̸= h(x)] ≤ ε. (1.4.2)

In other words, improper learners are allowed to use a much richer, expres-
sive model class even if the data comes from a simpler class. The following
is a classical result in learning theory:

Hardness of proper learning does not imply hardness of improper
learning.

Below, we provide a standard counterexample: learning Disjunctive Normal
Forms (DNFs).

1.4. PROPER VERSUS IMPROPER LEARNING 21

Definition 1.4.2 (k-term Disjunctive Normal Form (DNF)). Consider X =
(X1, X2, . . .) a sequence of boolean variables Xj ∈ {0, 1}. The class of k-term
Disjunctive Normal Form (DNF) Hk-DNF is the set of all boolean formulas5

that can be written as

h(X) =
k∨

i=1

(
mi∧
j=1

Lij

)
, (1.4.3)

where Lij = Xsij or ¬Xsij for some sij ≥ 1. Here ∨ denotes ‘or’, ∧ denotes

‘and’, ¬ denotes ‘not’, and
∧mi

j=1 Lij = Li1 ∧ Li2 ∧ · · · ∧ Limi
,
∨k

i=1Mi =
M1 ∨M2 ∨ · · · ∨Mk.

Pitt and Valliant (1988) showed that one can reduce the k-NM-Coloring
problem, which is NP-complete (2-NM-Coloring corresponds exactly to the
Set-Splitting Problem 1.3.3), to the k-term DNF problem.

Theorem 1.4.3 ([PV88]). Unless6 RP = NP, there is no polynomial-time
algorithm that properly learns7 k-term DNFs for k ≥ 2.

In contrast, an earlier work by Valiant (1984) showed the following:

Theorem 1.4.4 ([Val84]). There is a polynomial time-algorithm that improp-
erly learns k-term DNFs for any k ≥ 1.

In this case, the algorithm is allowed to output a function form the larger
class of k-Conjunctive Normal Forms (k-CNFs).

Definition 1.4.5 (k-Conjunctive Normal Form (k-CNF)). Consider X =
(X1, X2, . . .) a sequence boolean variables Xj ∈ {0, 1}. The class of k-
Conjunctive Normal Form (CNF) Hk-CNF is the set of all boolean formulas
that can be written as

h(X) =
m∧
i=1

(
k∨

j=1

Lij

)
, (1.4.4)

where Lij = Xsij or ¬Xsij for some sij ≥ 1.
5Here we take all possible input sizes {0, 1}∗. To restrict to a given input size d, we can simply consider

DNFs over at most d boolean variables. Note that h in (1.4.3) depends on at most m1 + . . .+mk variables.
6RP is the class of problems that can be solved in polynomial time by a randomized algorithm. We have

P ⊆ RP ⊆ NP. One can show that hardness of solving the ERM problem is equivalent to hardness of proper
learning, see [SSBD14, Exercise 8.7.4]: if H is properly learnable by a polynomial time algorithm, then the
ERM problem over H is in RP.

7Here, hardness holds in the distribution-free setting where the algorithm is required to succeed for all
input distributions over {0, 1}d. Later work proved hardness for fixed distributions (e.g., uniform distribution
[Kha93]) for polynomial-sized DNFs, under a cryptographic hardness assumption. See next section.

22 CHAPTER 1. INTRODUCTION

Lemma 1.4.6. Every k-term DNF can be written as a k-CNF.

This lemma follows from the following identity:

M1 ∨M2 ∨ · · · ∨Mk =
∧

s1∈[m1],...,sk∈[mk]

(L1s1 ∨ L2s2 ∨ · · · ∨ Lksk).

where Mi = Li1 ∧ Li2 ∧ · · · ∧ Limi
. We leave the proof of this identity as an

exercise.

Lemma 1.4.7. There exists a polynomial-time algorithm that properly learns
k-CNFs.

Using that k-term DNFs are contained in k-CNFs, this lemma directly
implies that k-term DNFs are improperly learnable (Theorem 1.4.4).

Proof. Consider H(d)
k-CNF the set of all k-CNFs over d variables. We construct

an algorithm that always outputs a k-CNF that perfectly fits the n training
data points. Denote (x1, . . . ,xn+

) the subset of the data that are positively
labeled. We construct a sequence a k-CNFs as follows:

• Start with h0 the conjunction of all possible k-sized clauses Mj = Lj1∨
Lj2∨. . .∨Ljk over the d variables. There are

(
2d
k

)
of them. In particular,

h0(x) = 0 for all x ∈ {0, 1}d (indeed, for all x, there will be a clause
that is not satisfied).

• For each i ≤ n+, construct hi be removing from hi−1 all the clauses
Lj1∨Lj2∨ . . .∨Ljk = 0, that is, the clauses that do not agree with this
data point. It is straightforward to check that

hi(x) =

{
1 if x ∈ {x1, . . . ,xi},
0 if x ∈ {0, 1}d \ {x1, . . . ,xi}.

• Output the k-CNF ĥ = hn+
. By construction, hn+

(x) = 1 if and only
if x ∈ {x1, . . . ,xn+

} (the positively labeled data points in the training
dataset). In particular, hn+

correctly predicts the labels of all n training
data points.

1.4. PROPER VERSUS IMPROPER LEARNING 23

This algorithm runs in time O(ndk) and returns a model with zero training

error. Let’s bound the test error of ĥ using a standard uniform convergence
bound. Consider h∗ the true target k-CNF:

R(ĥ;D) = P(ĥ(x) ̸= h∗(x))

= P(ĥ(x) ̸= h∗(x))−
1

n

n∑
i=1

1[ĥ(xi) ̸= h∗(xi)]

≤ sup
h∈H(d)

k-CNF

∣∣∣∣∣1n
n∑

i=1

1[ĥ(xi) ̸= h(xi)]− P(ĥ(x) ̸= h(x))

∣∣∣∣∣ .
where we used in the second line that the train error is zero. By union bound
and Hoeffding’s inequality,

P

(
sup

h∈H(d)
k-CNF

∣∣∣∣∣1n
n∑

i=1

1[ĥ(xi) ̸= h(xi)]− P(ĥ(x) ̸= h(x))

∣∣∣∣∣ ≥ t

)
≤ 2

∣∣∣H(d)
k-CNF

∣∣∣ exp{−2nt2} ≤ exp
{
(2d)k − 2nt2

}
,

where we used that log2

∣∣∣H(d)
k-CNF

∣∣∣ ≤ (2dk). We conclude that, given n samples

from any k-CNF and input distribution, the above algorithm runs in time
O(ndk) and outputs a model ĥ such that

R(ĥ;D) ≤ ε, with probability at least 1− δ,

as soon as n ≥ 1
2ε2

{
(2d)k + log(1/δ)

}
. Hence, k-CNFs are properly learnable

in polynomial time.

Summary: The example of k-term DNFs illustrates an important lesson:
hardness results for proper learning should be interpreted with caution. In
many cases, efficient learning is still possible by moving to a richer hypothesis
class and allowing for improper learning. That is, rather than requiring the
learned model to belong to the same class as the true function, we permit it
to belong to a larger, more expressive class—one that is easier to learn from
a computational standpoint.

This aligns closely with modern deep learning practice: we train highly-
overparametrized neural networks—that is, models that are far more expres-
sive than necessary to fit the training data—, and this overparametrization

24 CHAPTER 1. INTRODUCTION

appears to dramatically simplify the ERM problem, to the point that simple
gradient algorithms can reliably find global minimizers. This phenomenon is
sometimes referred to as tractability via overparametrization, and we refer to
[BMR21] for a discussion.

Remark 1.4.8 (Computation-Statistical trade-off). While enlarging the func-
tion class can make computation easier, it comes with a trade-off: general-
ization becomes more challenging as richer hypothesis classes require more
samples to learn. For instance, as seen in the proof of Lemma 1.4.7, the
sample size n scales with8 log(|H|). Thus

There is a fundamental computational-statistical trade-off between
proper versus improper learning.

1.5 Hardness of improper learning

If hardness of proper learning can be circumvented through improper learn-
ing, can we directly show hardness for improper learning? In particular,
given the topic of these lectures, can we show hardness of improper learn-
ing of neural networks? There exist a number of such results under various
assumptions.

In this section, we focus on an influential result by Klivans and Sherstov
(2006) [KS09], which we use to illustrate the typical approach for establishing
hardness of improper learning. Klivans and Sherstov showed that, under a
certain cryptographic assumption, no polynomial-time algorithm can improp-
erly learn 2-hidden layer neural networks with dε neurons9, for any ε > 0.

Remark 1.5.1. What do we mean by a cryptographic assumption? In cryp-
tography, the goal is to design protocols that keep information secure, even
in the presence of partial access to that information. It is currently unknown
whether any widely-used cryptographic protocol can be proven secure under
general complexity-theoretic assumptions such as P ̸= NP. Thus, modern cryp-
tographic systems are often based on more specific assumptions—typically, the
conjectured hardness of well-studied computational problems. The credibility
of such assumptions grows with the widespread use of the cryptographic pro-
tocols that rely on them.

8In the case of k-term DNFs versus k-term CNFs, the sample complexity jumps from Θ(kd) to Θ(dk).
9This result was later strengthened by [DLSS14], who showed hardness for learning networks with merely

ωd(1) neurons, under a different (average-case) hardness assumption.

1.5. HARDNESS OF IMPROPER LEARNING 25

In the case of Klivans and Sherstov, the hardness result is based on the
assumed intractability of the Shortest Vector Problem (SVP) in lattices, a
central problem in lattice-based cryptography. This assumption has been
extensively studied and underpins many post-quantum cryptographic proto-
cols.

Problem 1.5.2 (Shortest Vector Problem (SVP)). Consider a lattice in n
dimensions generated by n basis vectors v1, . . . ,vn ∈ Rn:

Ln =
{
a1v1 + a2v2 + . . .+ anvn : a1, a2, . . . , an ∈ Z

}
. (1.5.1)

In the f(n)-SVP problem, the goal is to approximate the length of the shortest
nonzero vector in Ln within a factor f(n).

Assuming hardness of the SVP problem, Klivans and Sherstov proved that
no polynomial-time algorithm improperly learns the class of intersection of
halfspaces :

Definition 1.5.3 (Intersection of k halfspaces). Let the input space be the
discrete hypercube X = {±1}d. A function h : {±1}d → {0, 1} is called an
intersection of k halfspaces if there exist k weights wj ∈ {±1}d such that

h(x) =
k∏

j=1

1[⟨wj,x⟩ > 0]. (1.5.2)

We denote H(d)
k−hlf the set of all intersections of k halfspaces.

Theorem 1.5.4 ([KS09]). Assuming d3/2-SVP is hard, then for every ε > 0,

the hypothesis class H(d)
k−hlf cannot be learned efficiently, even improperly.

The function h(x) in (1.5.2) can be written as a 2-hidden layer neural net-
work with ReLu activation, and 2k neurons on the first layer and 1 output
neuron. For each halfspace with vector wj, we add on layer 1 two neurons
(⟨wj,x⟩)+ and (⟨wj,x⟩ − 1)+ (where (x)+ = x1[x ≥ 0] is the ReLu activa-
tion), so that

(⟨wj,x⟩)+ − (⟨wj,x⟩ − 1)+ =

{
1 if ⟨wj,x⟩ > 0;

0 otherwise.

26 CHAPTER 1. INTRODUCTION

Then the output neuron on layer 2 computes(
k∑

j=1

[(⟨wj,x⟩)+ − (⟨wj,x⟩ − 1)+] + 1− k

)
+

=

{
1 if h(x) = 1;

0 if h(x) = 0.

Thus, Theorem 1.5.4 implies that the class of two-hidden-layer neural net-
works with dε-neurons cannot be learned efficiently, even improperly. Note
that such networks can be learned statistically efficiently: if one could find
a global minimizer of the ERM problem (1.1.6) over the class of neural net-
works with dε-neurons (and poly(d) bound on the norm of the weights), then
standard generalization bounds (e.g., see [BFT17]) show that one can achieve
small test error with n = poly(d) samples.

However, Theorem 1.5.4 implies a much stronger result than hardness of
ERM over dε-sized neural networks (which is already implied by Theorem
1.3.2): it rules out any polynomial-time learner, even one that uses a larger,
more expressive hypothesis class than the ground-truth network. That is,
even if we use a much larger, overparameterized neural network—so that the
ERM problem becomes amenable to gradient-based methods—the learned
model will still fail to generalize. Overparametrization does not help to learn
a good predictor in this setting (we need more assumptions)!

Proof sketch (Theorem 1.5.4). We outline the high-level strategy for estab-
lishing hardness of improper learning under cryptographic hardness assump-
tions. Consider a public-key encryption scheme. Such a system involves two
functions: a public encryption function encr and a private decryption func-
tion decr. Given a message m ∈ {0, 1}p, the public key is used to generate
an encrypted version x = encr(m) ∈ {0, 1}q. Then the encrypted message is
decrypted using the private key decr(x) = m. Encryption is computationally
efficient using the public key encr. On the other hand, decryption should
be easy only with access to the private key. In other words, it should be
computationally hard to recover m from x without the private key decr.

Now suppose that the decryption function decr belongs to a hypothesis
class H. If this class could be learned efficiently (even improperly), then an
adversary could generate a training set of input-output pairs:

x = encr(m), y = m = decr(x).

(Recall that the encryption function encr is public and can be computed
efficiently.) We can then use a learning algorithm to learn a model that

1.5. HARDNESS OF IMPROPER LEARNING 27

predicts decr(x) better than random on new encrypted messages. This would
break the cryptosystem, contradicting the assumed hardness of decryption.

Klivans and Sherstov apply this strategy to Regev’s cryptosystem—a
public-key encryption scheme whose security relies on the assumed hard-
ness of SVP. The decryption function in Regev’s scheme can be expressed as
the intersection of dε halfspaces. Therefore, learning these functions would
break Regev’s cryptosystem. This implies that learning intersection of half-
spaces, even improperly, is computationally hard under the SVP hardness
assumption.

Summary. How compelling is Theorem 1.5.4? Compared to the hardness
result in Section 1.3, which concerned proper learning, Theorem 1.5.4 is
much stronger: it establishes hardness for improper learning and rules out
any polynomial-time learning algorithms (under a cryptographic hardness
assumption). However, the result has an important limitation: it is a worst-
case hardness result over input distributions. That is, it shows that there
exists an input distribution for which improper learning is computationally
hard—but this distribution is not necessarily natural and may not resemble
real-world data. In fact, from the proof, we see that the hard distribution is
constructed by encrypting messages, which is not very natural!

Does the hardness of improperly learning intersections of halfspaces per-
sist under natural input distributions? Vempala [Vem97] showed that inter-
sections of k halfspaces are learnable under standard Gaussian input x ∼
N (0, Id), with both statistical and computational complexity bounded by
poly(d, k)+ kO(k). In particular, this result implies that the problem remains
tractable when the number of halfspaces satisfies k = Od(log d/ log log d).
On the other hand Daniely et al. [DLSS14] showed that the problem is
distribution-free hard as soon as k = ωd(1).

In recent decades, there have been many hardness results on improper
learning in both distribution-free and distribution-specific settings. For ex-
ample, a recent result by Li et al. [LZZ24] establishes the hardness of improper
learning for one-hidden-layer neural networks with ω(

√
d log d) neurons and

Gaussian input distribution, under hardness assumption for the Continuous
Learning with Errors (CLWE) problem. We refer the reader to [DV21, LZZ24]
and the references therein for an overview of recent developments.

28 CHAPTER 1. INTRODUCTION

1.6 Restricted models of computation

In this first chapter, we gave a brief introduction to the classical approach for
establishing hardness results based on reductions from well-known problems
that are conjectured to be computationally intractable (based on P ̸= NP

or cryptographic hardness assumption). These reductions allow us to de-
rive lower bounds under broadly accepted complexity-theoretic assumptions,
lending theoretical weight to the intractability of the learning tasks.

However, this general reduction-based approach has several limitations:
1) Reductions are often non-robust and technically delicate, making them
hard to extend to many interesting settings; 2) The resulting results are
usually qualitative (e.g., showing that a problem is NP-hard) rather than
quantitative; 3) They provide only limited insights on why algorithms used
in practice succeed or fail on natural problems.

An alternative line of research has emerged over the past few decades:
proving computational lower bounds against restricted models of computation—
that is, against specific families of algorithms. While these approaches fall
short of ruling out all polynomial-time algorithms (which would anyway re-
quire resolving P ̸= NP), they can exclude large and popular classes of algo-
rithms. In some cases, these restricted models are even conjectured to capture
the limits of all efficient algorithms for large classes of problems. Importantly,
these restricted-model approaches are often much easier to implement, apply
broadly to many settings, and yield sharper lower bounds.

In the remainder of these lectures, we will study four important families of
algorithms (or model of computation). For each, we will present techniques
to establish lower bounds and discuss their implications:

Chapter 2: Kernel methods. Kernel methods represent one of the sim-
plest class of learning algorithms. Despite their simplicity, they remain
foundational to machine learning and are still some of the most widely
used methods in practice. From a theoretical perspective, kernel meth-
ods have seen a resurgence of interest due to the recent observation that
neural networks trained in the so-called lazy regime behave as kernel
methods. For an overview of this connection, see [BMR21, MM24].

Understanding the limitations of fixed feature, kernel methods will help
clarify the advantages of more complex learning models, such as neural
networks trained in the non-linear, ‘feature learning’ regime.

Chapter 3: Noisy gradient descent. This chapter studies a simplified proxy

1.6. RESTRICTED MODELS OF COMPUTATION 29

for stochastic gradient descent (SGD), in which the algorithm performs
population gradient descent with added Gaussian noise. Though this
is not an actual implementation of SGD, it captures many key features
of its dynamics and has been shown to provide accurate predictions in
several settings. As SGD and its variants are the dominant algorithms
in deep learning, understanding their limitations is of central interest.
We will show how to prove lower bounds on noisy population gradient
descent using a ‘junk flow’ argument developed by Abbe and Sandon
[AS20].

Chapter 4: Statistical Query algorithms. Introduced by Kearns in the
1990s, the SQ model abstracts algorithms that access the data only
through statistical expectations (e.g., empirical means), rather than
individual examples. Many robust, noise-tolerant algorithms fall within
the SQ framework. Lower bounds in this model imply hardness for a
broad range of practical algorithms and have played a central role in
understanding the limits of learning in high-noise or agnostic settings.

Chapter 5: Low-Degree Polynomial algorithms. This model captures
algorithms whose outputs can be expressed as low-degree polynomi-
als of the input data. It has been particularly influential in studying
average-case complexity of high-dimensional inference problems. The
“low-degree method” is conjectured to characterize the power of all
efficient algorithms in a wide range of problems, including planted sub-
graph problems and planted random matrices or tensor problems. We
will show how to derive sharp lower bounds for learning Gaussian single-
index models within this framework.

30 CHAPTER 1. INTRODUCTION

Chapter 2

Kernel methods

In this chapter, we study kernel methods, also known as kernel machines or
RKHS methods. These algorithms form a rich yet tractable class of learning
methods that construct expressive, non-linear predictors—often in infinite-
dimensional spaces—while maintaining computational efficiency thanks to
the celebrated kernel trick.

Formally, kernel methods arise from a specific choice of models and reg-
ularization in the ERM problem (1.1.6). The idea is to first map the input
data x ∈ Rd into a rich, higher-dimensional feature space via a feature map
Φ(x) ∈ Rp (possibly with p = ∞), and then fit a linear predictor of the
form f(x;θ) = ⟨θ,Φ(x)⟩ subject to a RKHS-norm regularization penalty
(here, r(θ) = λ∥θ∥22). Although the model is linear in the parameters θ, it is
non-linear in the input data x, which generalizes standard linear regression
Φ(x) = x. Intuitively, this embedding can transform non-linearly separable
data into a space where linear classification becomes possible.

We begin our exploration of restricted algorithmic classes with kernel
methods because of their foundational role. Despite their apparent simplicity,
they remain one of the most versatile and widely used method in statistics and
machine learning. Moreover, they are connected to modern deep learning: in
a certain optimization regime—the so-called lazy or linearized regime [JGH18,
COB19]—neural networks behave like kernel machines. We will present a
simple, general dimension lower bound on learning with kernel methods in
the regression setting (with squared test loss).

31

32 CHAPTER 2. KERNEL METHODS

2.1 Feature space and RKHS

Consider a general input space X . Below, we construct the classes F of
models f : X → R associated to kernel methods.

There are several equivalent ways to define this function space; here, we
adopt a particularly intuitive one: we define it through a featurization map
and an associated Hilbert feature space, and interpret our model class as the
set of all linear functionals on this space.

Definition 2.1.1 (Feature space, featurization map, and linear models).

(1) (Feature space.) A feature space is a Hilbert space (F , ⟨·, ·⟩F) with

inner product ⟨·, ·⟩F and associated norm ∥ϕ∥F = ⟨ϕ, ϕ⟩1/2F .

(2) (Featurization map.) A featurization map is a function Φ : X → F
that embeds the input data x ∈ X into the feature space Φ(x) ∈ F .

(3) (Linear model class.) Given (F ,Φ), the associated class of models is
the set of all linear functionals with respect to this embedding

F =
{
x 7→ f(x;θ) = ⟨θ,Φ(x)⟩F : θ ∈ F

}
. (2.1.1)

This defines a function space F consisting of functions f : X → R that are
linear in the feature space. The inner product and norm on F are inherited
from the feature space F via:

⟨f(·;θ), f(·;θ′)⟩F = ⟨θ,θ′⟩F , ∥f(·;θ)∥F = ∥θ∥F . (2.1.2)

This identification endows F with a Hilbert space structure, assuming the
map θ 7→ f(·;θ) is injective.
Remark 2.1.2. In general, multiple parameter vectors θ,θ′ ∈ F may define
the same function: that is, f(·;θ) = f(·;θ′) as functions on X , even if θ ̸= θ′.
To define a proper Hilbert space structure on F , we must quotient out this
ambiguity. That is, we define an equivalence relation on F by θ ∼ θ′ if
f(x;θ) = f(x;θ′) for all x ∈ X , and set

F̃ := F/ker(Φ)

where ker(Φ) = {θ ∈ F : ⟨θ,Φ(x)⟩F = 0 ∀x ∈ X} is the linear subspace of
parameter vectors that correspond to the zero function. The inner product
on F̃ is well-defined. The map from F̃ to F is now injective and induces a
valid Hilbert space structure (Prove it!).

2.1. FEATURE SPACE AND RKHS 33

We next present three examples of feature space, featurization map, and
associated linear model classes.

Example 2.1.3 (Standard linear regression). Let X = Rd. We define the
feature space F = Rd equipped with the standard Euclidean inner product:

⟨u,v⟩ = u1v1 + . . .+ udvd.

We take the identity map as the feature map: Φ(x) = x. Then, the class of
linear models associated to (F ,Φ) becomes:

F =
{
f(x;θ) = ⟨θ,x⟩ : θ ∈ Rd

}
,

which corresponds to standard linear regression. The associated function
norm is simply ∥f(·;θ)∥F = ∥θ∥2.

Example 2.1.4 (Polynomial regression model). For simplicity, let X = R.
Choose the feature space F = Rk+1 with the standard Euclidean inner prod-
uct. Define the feature map

Φ(x) = (1, x, x2, . . . , xk).

Then the linear model class associated to (F ,Φ) consists of all univariate
polynomials of degree at most k:

f(x;θ) = θ1 + θ2x+ θ3x
2 + . . .+ θk+1x

k.

As before, the function norm is given by ∥f(·;θ)∥F = ∥θ∥2.

Example 2.1.5 (Infinite-width two-layer neural networks). Let (Ω, µ) be a
probability space and define the feature space as the Hilbert space of square-
integrable functions:

F = L2(Ω, µ) =

{
a : Ω→ R : ∥a∥2L2 =

∫
Ω

a(w)2µ(dw) <∞
}
,

with inner product

⟨a, b⟩L2 =

∫
Ω

a(w)b(w)µ(dw).

Let φ : X × Ω → R be a mapping such that φ(x; ·) ∈ L2(Ω, µ) for all x ∈
X . For example, φ(x;w) = σ(⟨x,w⟩), where σ is a non-linear activation
function (e.g., ReLU). Define the featurization map Φ : X → L2(Ω, µ) to be

Φ(x) := φ(x; ·), Φ(x)(w) = φ(x;w).

34 CHAPTER 2. KERNEL METHODS

Then the model class is:

F =

{
x 7→ f(x; a) = ⟨a,Φ(x)⟩L2 =

∫
Ω

a(w)φ(x;w)µ(dw) : a ∈ L2(Ω, µ)

}
,

with norm ∥f(·; a)∥F = ∥a∥L2. This corresponds to the class of infinite-width
two-layer neural network where the second layer weights have bounded L2

norm with respect to the distribution µ of the first layer weights w1.

The function space (F , ⟨·, ·⟩F) introduced in Equation (2.1.1) has an im-
portant structure: it is a Reproducing Kernel Hilbert Space (RKHS). While we
initially defined this function space via a feature map into a Hilbert space,
RKHS theory provides an alternative—but equivalent—construction via a
kernel that does not require explicitly defining the feature map. This kernel-
based viewpoint will be important in the next section, and we briefly intro-
duce it here. For a comprehensive treatment, see [BTA11].

Definition 2.1.6 (Reproducing Kernel Hilbert space (RKHS)). A Hilbert
space (H , ⟨·, ·⟩H) consisting of real-valued functions f : X → R is a Re-
producing Kernel Hilbert space (RKHS) if there exists a reproducing kernel
K : X × X → R, that is, a symmetric, positive semi-definite (PSD) kernel2

such that K(x, ·) ∈H for all x ∈ X and

⟨f,K(x, ·)⟩H = f(x), ∀x ∈ X , ∀f ∈H . (2.1.3)

Every RKHS defines a unique reproducing kernel, and conversely, the
Moore–Aronszajn theorem [Aro50] states that any symmetric, positive defi-
nite kernel defines a unique RKHS.

The function space F = {f(·;θ) = ⟨θ,Φ(·)⟩F : θ ∈ F} with induced
inner product by F (see Remark 2.1.2) is indeed an RKHS. Its reproducing
kernel is

K(x,x′) = ⟨Φ(x),Φ(x′)⟩F , (2.1.4)

which is clearly symmetric and PSD, and satisfies the reproducing prop-
erty (2.1.3). The kernels associated with the above three examples are:

K(x,x′) = ⟨x,x′⟩, (Example 2.1.3)

1This will have important consequences on learning: many natural functions—with low-dimensional
structure—will not lie in F and will not be learned efficiently by kernel methods. See [Bac17, CMM21].

2A kernel K : X×X → R is PSD if for all integer n ∈ N, points x1, . . . ,xn ∈ X and scalars a1, . . . , an ∈ R,
n∑

i,j=1

aiajK(xi,xj) ≥ 0.

2.1. FEATURE SPACE AND RKHS 35

K(x, x′) = 1 +
k∑

s=1

(xx′)s, (Example 2.1.4)

K(x,x′) =

∫
Ω

φ(x;w)φ(x′;w)µ(dw). (Example 2.1.5)

Feature Maps vs. Kernels. The feature map and kernel perspectives are
mathematically equivalent ways of defining the same function space. Given
any RKHS (H , ⟨·, ·⟩H) with reproducing kernel K, one can always choose
the feature space to be the RKHS itself F = H and define the canonical
feature map:

Φ : X →H , Φ(x) := K(x, ·).

This construction satisfies:

f(x) = ⟨f,K(x, ·)⟩H = ⟨f,Φ(θ)⟩F ,

by the reproducing property (2.1.3). Note that a given RKHS admits in-
finitely many equivalent featurizations (F ,Φ) yielding the same kernel3.

Why work with kernels? The construction via feature map provides a
concrete, geometric intuition for kernel methods: they correspond to linear
models in an (often infinite-dimensional) Hilbert space of features, where in-
ner products and norms are naturally inherited from the underlying feature
space. However, in practice, we often prefer the definition through kernels:
the kernel K(x,x′) can be defined and evaluated directly using simple for-
mulas, while the featurization map Φ(x) is often infinite dimensional and not
explicitly computable. For example, the Radial Basis Function (RBF) kernel,

K(x,x′) = exp

(
−∥x− x′∥22

2σ2

)
,

is straightforward to compute, but the corresponding feature map lives in an
infinite-dimensional space and is difficult to construct explicitly.

Moreover, as we see in the next section, all computations in kernel meth-
ods, such during training or prediction, can be expressed purely in terms of
the kernel thanks to the so-called kernel trick.

3While all such maps are equivalent in terms of learning, some featurization might provide better finite-
dimensional approximations, e.g., such as random features [BBV06, RR07].

36 CHAPTER 2. KERNEL METHODS

Kernel diagonalization. Before turning back to kernel methods, let us
introduce one last characterization of the RKHS—through the eigendecom-
position of the kernel. This gives a more transparent definition of RKHS as
subsets of L2(PX), and plays a crucial role in the generalization performance
of kernel methods. Given a kernel function K such that Ex[K(x,x)] < ∞,
we can define the associated ‘integral’ operator K : L2(PX)→ L2(PX) as

(Kf)(x) =
∫
X
K(x,x′)f(x′)PX (dx′). (2.1.5)

Note that K is a compact, self-adjoint linear operator on L2(PX) with

Tr(K) = Ex

[
∥K(x, ·)∥2H

]
= Ex[K(x,x)] <∞.

We say that the operator K is ‘trace-class’ when it has bounded trace.
By the spectral theorem for compact self-adjoint linear operators, the

integral operator admits the following diagonalization:

K =
∑
j≥1

λjψjψ
∗
j , (2.1.6)

where λ1 ≥ λ2 ≥ · · · are the (positive) eigenvalues in non-increasing order,
and {ψj}j≥1 is the set of orthonormal eigenfunctions. That is,

Kψj = λjψj, ⟨ψj, ψj′⟩L2 = δjj′.

Denote V = span{ψj : j ≥ 1} the subspace of L2(PX) spanned by these
eigenfunctions. In particular, V = L2(PX) if and only if {ψj}j≥1 forms a
complete basis of L2(PX).

In fact, the image of the operator is exactly Im(K) = H the RKHS
with reproducing kernel K: you can check that indeed ⟨Kf,K(x, ·)⟩H =
Kf(x) by definition. In particular, consider f ∈ V and its expansion in the
eigenfunction basis:

f =
∑
j≥1

βjψj, βj := ⟨f, ψj⟩L2, with ∥f∥2L2 =
∑
j≥1

β2
j <∞.

Then, the RKHS norm of f is given by

∥f∥2H =
∞∑
j=1

β2
j

λj
.

2.2. KERNEL METHODS AND THE KERNEL TRICK 37

Thus, the RKHS H is simply the subset of all functions in V with ∥f∥H <∞,
that is,

H :=

{
f ∈ V : ∥f∥2H =

∑
j≥1

λ−1j ⟨f, ψj⟩2L2 <∞

}
. (2.1.7)

The RKHS H is a dense subset of V—and of L2(PX) if {ψj}j≥1 forms a
complete basis. In this case, we can approximate any f ∈ L2(PX) by a
sequence of functions in H : the RKHS model class satisfies a ‘universal
approximation’ property. But as we will see, it is not always statistically
efficient.

Finally, we can use the above characterization (2.1.7) to define another
canonical feature map. Let the feature space F be (ℓ2, ⟨·, ·⟩ℓ2) the Hilbert
space of square summable sequences, with

⟨a, b⟩ℓ2 =
∞∑
j=1

ajbj.

Then we can define the featurization map as Φ(x) = {
√
λjψj}∞j=1. Thus, the

set of linear models is simply (equality in L2)

f(x) = ⟨θ,Φ(x)⟩ℓ2 =
∞∑
j=1

θj
√
λjψj(x), ∥θ∥2ℓ2 =

∞∑
j=1

θ2j <∞.

We can seeK acting on V as acting on the ℓ2 space, withK(aj)
∞
j=1 = (λjaj)

∞
j=1.

2.2 Kernel methods and the kernel trick

A kernel method is simply the solution to the Empirical Risk Minimization
problem (1.1.6) over a Reproducing Kernel Hilbert Space (H , ⟨·, ·⟩H), with
a regularization penalty proportional to the RKHS norm. That is, given
training data (yi,xi) ∈ R×X , i = 1, . . . , n, the learned predictor f̂ solves

f̂ = argmin
f∈H

{
1

n

n∑
i=1

ℓ(yi, f(xi)) + λ∥f∥2H

}
. (2.2.1)

38 CHAPTER 2. KERNEL METHODS

Equivalently, if the RKHS H is defined via an embedding (F ,Φ), then the

solution of the ERM problem is given by f̂ = ⟨θ̂,Φ(·)⟩F with

θ̂ = argmin
θ∈F

{
1

n

n∑
i=1

ℓ(yi, ⟨θ,Φ(xi)⟩F) + λ∥θ∥2F

}
. (2.2.2)

This formulation appears computationally intractable: it is an optimiza-
tion problem over an infinite-dimensional space. So is the method practical?
Can it be implemented efficiently? Surprisingly, yes—and this is due to
the following celebrated representer theorem, which shows that the solution
always lies in a finite-dimensional subspace of F , namely the span of the
embedded training data.

Theorem 2.2.1 (Representer theorem). Let ℓ be any loss function (e.g., not

necessarily convex). Then the solution θ̂ of the ERM problem (2.2.2) satisfies

θ̂ ∈ span{Φ(x1), . . . ,Φ(xn)}. (2.2.3)

In other words, there exist coefficients â1, . . . ân ∈ R such that

θ̂ =
n∑

i=1

âiΦ(xi). (2.2.4)

Proof. The proof is simple and relies only on the Hilbert space structure of
F . Let V∥ = span{Φ(xi) : i ∈ [n]}, and let V⊥ be its orthogonal complement
in F , so that

F = V∥ ⊕ V⊥.
Then any θ ∈ F can be decomposed uniquely as θ = θ∥ + θ⊥ with θ∥ ∈ V∥
and θ⊥ ∈ V⊥. Because Φ(xi) ∈ V∥, we have

⟨θ,Φ(xi)⟩F = ⟨θ∥,Φ(xi)⟩F + ⟨θ⊥,Φ(xi)⟩F = ⟨θ∥,Φ(xi)⟩F .

Thus, θ⊥ has no effect on the loss, but it contributes positively to the regu-
larization term ∥θ∥2F = ∥θ∥∥2F + ∥θ⊥∥2F . Hence, the optimal solution

θ̂ = argmin
θ

{
1

n

n∑
i=1

ℓ(yi, ⟨θ∥,Φ(xi)⟩F) + λ∥θ∥∥2F + λ∥θ⊥∥2F

}

must satisfy θ⊥ = 0, i.e., θ̂ ∈ V⊥.

2.2. KERNEL METHODS AND THE KERNEL TRICK 39

Using the representer theorem, we can now reduce the infinite-dimensional
optimization problem (2.2.2) to a finite-dimensional one over the coefficients
a = (a1, . . . , an) ∈ Rn, where θ =

∑n
i=1 aiΦ(xi). Define:

kn(x) := (K(x,xi))i∈[n] ∈ Rn, Kn := (K(xi,xj))ij∈[n] ∈ Rn×n,

where K(x,x′) = ⟨Φ(x),Φ(x′)⟩F is the reproducing kernel. Then we can
rewrite:

⟨Φ(x),θ⟩F =
n∑

i=1

aiK(x,xi) = aTkn(x),

∥θ∥2F =
n∑

i,j=1

aiajK(xi,xj) = aTKna.

Substituting into the ERM objective, we obtain a finite-dimensional opti-
mization problem:

â = argmin
a∈Rn

{
1

n

n∑
i=1

ℓ(yi,a
Tkn(xi)) + λaTKna

}
. (2.2.5)

In particular, if ℓ is convex in its second argument, this is an n-dimensional
convex optimization problem and can be solved efficiently! Once we have
computed â, the predictor is given by

f̂(x) = ⟨θ̂,Φ(x)⟩F =
n∑

i=1

âiK(x,xi) = âTkn(x). (2.2.6)

Thus to train kernel methods and make predictions on new data, we never
need to compute the feature map Φ(x) directly, only the inner products
K(x,x′) = ⟨Φ(x),Φ(x′)⟩F . This observation is known as the kernel trick :
it allows to construct expressive, non-linear classifiers in infinite-dimensional
feature space without ever having to explicitly represent the features. This
is the reason kernel methods became so popular!

For concreteness, we present two popular examples of kernel methods
below.

Example 2.2.2 (Kernel Ridge Regression (KRR)). Let the loss function be
the squared loss ℓ(y, ŷ) = (y − ŷ)2. Then kernel ridge regression (KRR)
corresponds to solving the ERM problem

f̂ = argmin
f∈H

{
1

n

n∑
i=1

(
yi − f(xi)

)2
+ λ∥f∥2H

}
.

40 CHAPTER 2. KERNEL METHODS

By the representer problem, the solution admits an explicit formula f̂ =
âTkn(·) where

â = argmin
a∈Rn

{
1

n
∥y −Kna∥22 + λaTKna

}
= (Kn + nλ)−1y,

where y = (y1, . . . , yn) ∈ Rn, so that f̂ = yT(Kn+nλ)
−1kn(·). Thanks to this

analytical expression, one can derive very precise theory on the performance
of KRR, see for example [CDV07, DW18, MM24, MS24].

Example 2.2.3 (Support Vector Machines (SVM)). SVMs are designed for
binary classification. Suppose yi ∈ {−1,+1} and let the loss function be
the hinge loss ℓ(y, ŷ) = max(0, 1 − yŷ). The SVM classifier minimizes the
regularized empirical risk

f̂ = argmin
f∈H

{
1

n

n∑
i=1

max
(
0, 1− yif(xi)

)
+ λ∥f∥2H

}
,

and we predict new labels via the sign ŷ = sign(f̂(x)).
It is standard to solve SVMs via their dual formulation. By the representer

theorem, we can write the dual variables α ∈ Rn which satisfy

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi,xj),

subject to 0 ≤ αi ≤
1

2nλ
∀i, and

n∑
i=1

αiyi = 0.

The predictor is given by f̂(x) =
∑n

i=1 αiyiK(x,xi). Most of the coefficients
αi are zero—only the support vectors (i.e., data points close to the decision
boundary) have non-zero weights.

2.3 Dimension lower bounds

In this section, we present a simple and general lower bound on the perfor-
mance of kernel methods. As we saw in the previous section, kernel methods
trained on n data points involve solving an n-dimensional convex problem,
and the computational complexity of these methods is closely tied to the

2.3. DIMENSION LOWER BOUNDS 41

number of training samples. Thus, our result will be a lower bound directly
on the statistical complexity of kernel methods.

For concreteness, we focus on the regression setting and quantify perfor-
mance using the test error under squared loss. Our lower bound will apply
to any predictor obtained by a kernel method, regardless of the choice of
RKHS, training loss ℓ, or regularization parameter λ > 0 in the ERM prob-
lem (2.2.1). For related results in the classification setting (where the test
loss is a classification loss), we refer the reader to [KMS20].

The argument relies on a geometric observation: kernel methods construct
predictors from a fixed, finite-dimensional subspace—one that depends only
on the input data, and not on the target function. Therefore, their ability
to approximate a class of target functions is fundamentally limited by the
expressive power of that subspace. Our lower bound will be the consequence
of a general dimension lower bound that states that any linear subspace of
functions that aims to approximate a collection of functions H must have
dimension at least proportional to some complexity measure of H.

Such dimension lower bounds have appeared in various forms in the liter-
ature and have recently gained renewed attention in the context of learning
theory [KMS20, DM20, HSSVG21, AZL20, AAM22]. Below we follow the pre-
sentation and proof by Hsu [Hsu21], which is largely based on a lower bound
on the Kolmogorov n-width of certain function classes by Barron [Bar93].

Theorem 2.3.1 ([Hsu21, AAM22]). Let R be a Hilbert space with inner-
product ⟨·, ·⟩R, and H = {h1, . . . , hN} ⊂ R be a set of N elements in R with
∥hi∥R = 1,∀i ∈ [N]. Let T ⊂ R be a finite-dimensional linear subspace of
R, with dimension m. Define the average squared approximation error:

ε :=
1

N

N∑
i=1

inf
f∈T
∥f − hi∥2R.

Then

m ≥ N

∥G∥op
(1− ε),

where G = (Gij)ij∈[N] = (⟨hi, hj⟩R)ij∈[N] ∈ RN×N is the Gram matrix of H.
Proof. Let ϕ1, ϕ2, . . . , ϕm be an orthonormal basis of T (with ⟨ϕi, ϕj⟩R = δij)
and let ΠT be the orthonal projection onto T in (R, ⟨·, ·⟩). We can write for
every h ∈ R:

ΠT h =
m∑
j=1

ϕj⟨ϕj, h⟩R.

42 CHAPTER 2. KERNEL METHODS

By definition,

ε =
1

N

N∑
i=1

inf
f∈T
∥f − hi∥2R =

1

N

N∑
i=1

1− ∥ΠT hi∥2R

= 1− 1

N

N∑
i=1

m∑
j=1

⟨ϕj, hi⟩2R,
(2.3.1)

where we used that ∥hi∥R = 1 in the second equality. For any f ∈ R, we
have

N∑
i=1

⟨f, hi⟩2R =

〈
f,

N∑
i=1

⟨f, hi⟩Rhi

〉
R

≤ ∥f∥R

(
N∑

i,j=1

⟨f, hi⟩R⟨f, hj⟩R⟨hi, hj⟩R

)1/2

= ∥f∥R(bTGb)1/2 ≤ ∥f∥R∥G∥1/2op ∥b∥2,

where we introduced the vector b := (⟨f, hj⟩)Nj=1. Note that ∥b∥22 corresponds
exactly to the left hand-side of the above inequality. Squaring both sides and
dividing by ∥b∥22, we obtain

N∑
i=1

⟨f, hi⟩2R ≤ ∥f∥2R∥G∥op.

Using this upper bound in Equation (2.3.1), we deduce that

1− ε = 1

N

m∑
j=1

N∑
i=1

⟨ϕj, hi⟩2R ≤
m

N
∥G∥op.

Rearranging the terms yields the desired bound.

Theorem 2.3.1 gives a general lower bound on function approximation
in Hilbert spaces. Given a function class H = {h1, . . . , hN} of unit-norm
elements in a Hilbert space (R, ⟨·, ·⟩R), we wish to approximate each function
hi using a model f ∈ T , where T is a finite-dimensional linear subspace of
R. For each hi ∈ H, the best possible approximation error in squared norm
is given by

inf
f∈T
∥f − hi∥2R.

2.3. DIMENSION LOWER BOUNDS 43

Then, Theorem 2.3.1 states that in order to achieve ε average squared ap-
proximation error over the class H, the subspace T must have dimension at
least

dim(T) ≥ |H|
∥G∥op

(1− ε).

If the functions {hi} are orthonormal, such that ∥G∥op = ∥IN∥op = 1, the
bound becomes

dim(T) ≥ (1− ε)|H|.

Thus to achieve small approximation error (say, ε ≤ 0.1), the subspace must
have dimension nearly equal to the size of the function class.

When the functions hi are not orthogonal, the bound weakens, and is
controlled by the spectral norm of the Gram matrix. A useful simplification
of this bound is given in terms of pairwise correlations:

1

N
∥G∥op ≤

1

N
∥G∥1,∞ = max

h∈H

1

N

∑
h′∈H

|⟨h, h′⟩R|

= sup
h∈H

Eh′∼Unif(H)[|⟨h, h′⟩R|].
(2.3.2)

If all functions are nearly orthogonal, then the Gram matrix stays well-
conditioned, and the lower bound remains large. Note that for some function
classes, the average pairwise correlation (2.3.2) does not give a tight lower
bound. In these cases, one should directly consider directly ∥G∥op/N over a
(carefully chosen) subset of H (see Section 2.4.1 and Appendix A.2.1).

We emphasize here that this dimension lower bound is extremely general.
It does not rely on any particular learning problem, statistical assumption, or
specific algorithm. It simply applies to any predictor constrained to lie in a
fixed, finite-dimensional subspace of a Hilbert space. In particular, it applies
beyond supervised learning—for example, to settings involving non-adaptive
membership queries [Hsu21].

Lower bound for kernel methods. Let us now explain how to derive a
lower bound for kernel methods from Theorem 2.3.1. Consider an input space
X with distribution PX ∈ P(X), and n covariate vectors x1, . . . ,xn ∈ X . Let
R := L2(PX). Consider an RKHS H ⊆ L2(PX) with reproducing kernel
K, and denote p = dim(H) ∈ N ∪ {∞} its dimension4. By the representer

4E.g., p ≤ d in Example 2.1.3, p ≤ k + 1 in Example 2.1.4, and typically p =∞ in Example 2.1.5.

44 CHAPTER 2. KERNEL METHODS

theorem, any kernel method predictor f̂ when the n data points have input
vectors (x1, . . . ,xn) lie in the linear subspace

f̂ ∈ span{K(xi, ·) : i ∈ [n]} =: T .

Conditional on the covariate vectors xi, this is a fixed linear subspace with

dim(T) ≤ min(n, p).

Consider a set of target functions H = {h1, . . . , hN} ⊆ L2(PX) and let

f̂ (1), . . . , f̂ (N) be the predictors obtained by the kernel method when the la-
bels come from each of these target functions. More precisely, fix arbitrarily
n covariate vectors (xi)i∈[n] ⊂ Rd and let f̂ (j) : X → R be the predictor
constructed by the kernel method when given data (yi,xi)i∈[n] with

yi = hj(xi) + εi. (2.3.3)

(Here εi are chosen arbitrarily and can be different for different j. Thus, the
labels yi are in fact arbitrary.)

The excess test error (1.1.4) with squared loss and target hj is given by

Rexc(f̂
(j);hj) = ∥f̂ (j) − hj∥2L2 ≥ inf

f∈T
∥f − hj∥2L2,

and the average excess test error is given by

1

N

N∑
j=1

∥f̂ (j) − hj∥2L2 ≥
1

N

N∑
j=1

inf
f∈T
∥f − hj∥2L2. (2.3.4)

Theorem 2.3.1 directly implies the following result:

Corollary 2.3.2. For any function space L2(PX), any set of unit-norm target
functions H = {h1, . . . , hN} ⊆ L2(PX), the following holds. For any kernel
method (2.2.1), any n covariate vectors (xi)i∈[n] ⊂ Rd, any labels (2.3.3), and
any ε > 0, if the average excess test error (2.3.4) is less than ε, then we must
have

min(n, p) ≥ N

∥G∥op
(1− ε), (2.3.5)

where p = dim(H) is the dimension of the RKHS and G = (Gij)ij∈[N] =
(⟨hi, hj⟩R)ij∈[N] is the Gram matrix of H.

2.4. EXAMPLES 45

Note that this result does not depend on any assumption over the xi’s
other than they are chosen independently of the label: it holds for any
‘non-adaptive’ set of covariate vectors—that is, chosen independently of the
labels—and not only for i.i.d. samples (see discussion in [Hsu21]) .

We further present a straightforward strengthening of this bound from
[AAM22] that will be useful in our examples. Some projections of the target
functions are harder to fit for kernel methods [GMMM21, MMM22]. Con-
sider some linear subspace Ω ⊆ L2(PX) and the orthogonal decomposition
L2(PX) = Ω⊕ Ω⊥. Denote PΩ and PΩ⊥ = I− PΩ the orthogonal projections
onto Ω and Ω⊥ respectively. We can distinguish the error incurred on each
of these two orthogonal subspaces and lower bound the excess test error as

Rexc(f̂
(i);hi) ≥ ∥PΩ(f̂

(i) − hi)∥2L2 ≥ inf
f∈T
∥PΩ(f − hi)∥2L2.

Thus, in Theorem (2.3.1), we can choose R to be the subspace Ω instead
of L2(PX) and H = {PΩh1, . . . ,PΩhN}. If we assume ∥PΩhi∥2L2 = β for all
i ∈ [N], then if the average excess test error with squared loss over H is less
than ε, then we must have

min(n, p) ≥ N

∥GΩ∥op
(β − ε), (2.3.6)

where GΩ = (⟨hi,PΩhj⟩R)ij∈[N].

Neural networks trained in the lazy regime. [Describe neural tan-
gent model and failure of Neural networks trained in the lazy
regime.]

2.4 Examples

We now return to the two hypothesis classes introduced in Section 1.2 in
Chapter 1—namely, Gaussian single-index models (Equation (1.2.1)) and
sparse functions on the hypercube (Equation (1.2.3)). We apply the dimen-
sion lower bound in Corollary 2.3.2 to lower bound the performance of kernel
methods when learning in these settings.

46 CHAPTER 2. KERNEL METHODS

2.4.1 Gaussian single-index models

Consider the hypothesis class H(d)
SI of Gaussian single-index models, where

each regression function is of the form

hw(x) := f∗(⟨w,x⟩), with w ∈ Sd−1,

with a fixed univariate link function f∗ ∈ L2(γ1). Since our lower bounds
depend only on the regression functions, we identify each distribution Dw ∈
H(d)

SI with its corresponding hw.
We use the notation γd := N (0, Id) for the d-dimensional standard Gaus-

sian distribution, and γ̄d := Unif(Sd−1) for the uniform measure on the unit
sphere.

Function space over Gaussian data. We first recall the orthogonal de-
composition of L2(γd) in terms of multivariate Hermite polynomials.

Let {Hek}k≥0 denote the (probabilists’) Hermite polynomials, forming an
orthogonal basis of L2(γ1), with Hek of degree k and

EG∼γ1[Hek(G)Hes(G)] = k!δk=s. (2.4.1)

For a multi-index k = (k1, . . . , kd) ∈ Zd
≥0, define the multivariate Hermite

polynomial :

Hek(x) =
d∏

i=1

Heki(xi). (2.4.2)

These polynomials form an orthogonal basis of L2(γd) with

Ex∼γd[Hek(x)Hek′(x)] = k! · δk=k′, where k! := k1!k2! · · · kd!.

We define
Ωd,k = span {Hek : ∥k∥1 = k}

as the subspace of degree-k polynomials in this basis. Its dimension is

Bd,k := dim(Ωd,k) =

(
d+ k − 1

k

)
.

This leads to the orthogonal decomposition:

L2(γd) =
∞⊕
k=0

Ωd,k. (2.4.3)

2.4. EXAMPLES 47

Let Pk denote the orthogonal projection onto Ωd,k. We will further introduce
P≤k the projection onto the subspace of polynomials of degree at most k and
P≥k = I− P≤k−1. That is, P≤k and P≥k are the projections onto

Ωd,≤k =
k⊕

s=0

Ωd,s, and Ωd,≥k =
∞⊕
s=k

Ωd,s,

respectively.
We now recall several useful facts about Hermite polynomials. These can

be proved by induction or integration by parts and will be used repeatedly
trhoughout these lectures:

Proposition 2.4.1 (Properties of Hermite polynomials). For integer k ≥ 0:

(i) (Three-term recurrence relation.) We have: He0(x) = 1, He1(x) = x,
and

Hek+1(x) = xHek(x)− kHek−1(x). (2.4.4)

(ii) (Differentiation rule.) We have the identity

d

dx
Hek(x) = kHek−1(x). (2.4.5)

(iii) (Stein’s identity.) For any function g : R→ R that is k-times differen-
tiable with suitable decay,

EG∼γ1[Hek(G)g(G)] = EG∼γ1[g
(k)(G)]. (2.4.6)

From Proposition 2.4.1.(iii), one obtain (Prove it!):

Lemma 2.4.2. Let k, k′ ∈ N and w,w′ ∈ Sd−1. Then

Ex∼γd[Hek(⟨w,x⟩)Hek′(⟨w′,x⟩)] = k!⟨w,w′⟩kδk=k′. (2.4.7)

For any w ∈ Sd−1, the marginal distribution of the projection is ⟨w,x⟩ ∼
γ1. Therefore, the target function hw(x) = f∗(⟨w,x⟩) admits the following
Hermite expansion:

f∗(⟨w,x⟩) =
∞∑
k=0

µk
k!
Hek(⟨w,x⟩),

where µk := EG∼γ1[f∗(G)Hek(G)].

(2.4.8)

48 CHAPTER 2. KERNEL METHODS

This shows that the degree-k projection of hw is Pkhw(x) =
µk

k!Hek(⟨w,x⟩).
Consequently, the squared L2-norm of the high-degree projection satisfies

∥P≥kh∥2L2 = ∥P≥kf∗∥2L2 =
∞∑
ℓ=k

µ2ℓ
ℓ!
. (2.4.9)

Average excess test error. Fix a set of n covariate vectors (xi)i∈[n] ⊂ Rd.

Similarly as in (2.3.3), let f̂w denote the predictor output by a kernel method
trained on labels generated by the target function hw. We are interested in

the average excess test error over the hypothesis class H(d)
SI with uniform prior

w ∼ γ̄d, defined as:

Ew∼γ̄d

[
Rexc(f̂w,Dw)

]
= Ew∼γ̄d

[
∥f̂w − hw∥2γd

]
. (2.4.10)

A simple lower bound. We begin with a preliminary, simple lower bound
based on average pairwise correlations. For any k ∈ N and any two functions

hw, hw′ ∈ H(d)
SI , the inner product between their projections onto degree ≥ k

Hermite polynomials satisfies:

⟨hw,P≥khw′⟩L2 = E[P≥kf∗(⟨w,x⟩)P≥kf∗(⟨w′,x⟩)]

=
∞∑
ℓ=k

µ2ℓ
ℓ!
⟨w,w′⟩ℓ, (2.4.11)

where we used the expansion (2.4.8) and Lemma 2.4.2. Hence, using |⟨w,w′⟩| ≤
1, we obtain:

|⟨hw,P≥khw′⟩L2| ≤ |⟨w,w′⟩|k∥P≥kf∗∥2L2.

Now consider the average pairwise correlation upper bound (2.3.2) on the
operator norm of the Gram matrix:

sup
w∈Sd−1

Ew′∼γ̄d[|⟨hw,P≥khw′⟩L2|] ≤ ∥P≥kf∗∥2L2Ew′∼γ̄d
[
|⟨w,w′⟩|k

]
≤ Ck

dk/2
∥P≥kf∗∥2L2.

(2.4.12)

Plugging this into the general dimension lower bound (2.3.6) (adapted to the
infinite hypothesis class H), we deduce that for every k ∈ N, if the average
excess test error satisfies

Ew∼γ̄d

[
∥f̂w − hw∥2L2

]
≤ (1− η)∥P≥kf∗∥2L2,

2.4. EXAMPLES 49

then the number of training points must satisfy:

n ≥ ckd
k/2η.

The test error when we fit exactly the projection of f∗ onto degree-(k − 1)
polynomials is ∥P≥kf∗∥2L2. Thus, the above bound states that unless n =

Ωd(d
k/2), kernel methods cannot do better than fitting the best degree-(k−1)

approximation to the target function—that is, P≤k−1f∗—and none of the
higher-order components.

Tight lower bound. The above lower bound is suboptimal. In fact, the
correct complexity threshold is n = Ωd(d

k). The proof is involved and is
deferred to Appendix A.2.1. Here, we outline the two main refinements that
enable the tight bound:

(1) The average pairwise correlation (2.3.2) provides only a crude upper
bound on the operator norm of the Gram matrix. Instead, we directly
bound the empirical Gram matrix norm ∥GΩd,≥k

∥op/M for a random
subset of N targets {hwj

}j∈[N] with support vectors {wj}j∈[N] ∼iid γ̄d.

(2) However, even this norm scales as d−k/2. The reason is because the
projection P≥kf∗(⟨w,x⟩) retains vanishing—but non-zero—components
on subspaces of spherical harmonics of degree ℓ < k. These components
contribute little in L2, but dominate the Gram matrix’s spectrum. To
overcome this, we project instead onto the subspace orthogonal to all
harmonics of degree less than k, which brings the operator norm down
to Θd(d

−k). While these lower-degree components do not play a role in
kernel methods—they have vanishing L2 contributions—, they will have
important algorithmic consequences when considering more powerful
methods (e.g., see Section 3.4.1 and [JKMS25]).

We restate the main result (Proposition A.2.1) from Appendix A.2.1 for
convenience:

Theorem 2.4.3. Consider the problem of learning Gaussian single-index
models (1.2.1) with target function f∗ ∈ L2(γ1). For every integer k ∈ N,
there exists a constant ck > 0 depending only on k such that the following
holds. For any kernel method and any n covariate vectors (xi)i∈[n] ⊂ Rd, the
average excess test error (2.4.10) satisfies

Ew∼γ̄d

[
∥hw − f̂w∥2L2

]
≥
(
1− od(1)− ck

n

dk

)
∥P≥kf∗∥2L2. (2.4.13)

50 CHAPTER 2. KERNEL METHODS

Thus, kernel methods cannot do better than fitting a degree-(k−1) poly-
nomial approximation to the target function unless n = Ωd(d

k).

Remark 2.4.4. [Add a remark on failure of NNs trained in the
lazy regime: Describe neural tangent model. Require samples and
number of parameters n, p ≥ dk. E.g., two layer neural nets with
M neurons require M ≥ dk−1. This is tights as shown in ... See
below.]

Matching upper bound. The lower bound in Theorem 2.4.3 is essentially
tight: there exists a kernel method that, for any k ∈ N, learns P≤kf∗ the
degree-k polynomial approximation to the target function with n = Ωd(d

k)
samples.

Let (ξk)k≥0 ∈ ℓ2 be a square-summable sequence with ξk ̸= 0 for all k ≥ 0.
Define the kernel:

K(x,x′) =
∞∑
k=0

ξ2k
Bd,k

∑
k∈Zd

≥0,∥k∥1=k

1

(k)!
Hek(x)Hek(x

′), (2.4.14)

where Hek is the multivariate Hermite polynomial (2.4.2) with multi-index
k ∈ Zd

≥0.
This kernel is designed so that the corresponding integral operator K

diagonalizes over the decomposition L2(γd) =
⊕

k≥0Ωd,k, with:

KHek = Ex∼γd[K(·,x)Hek(x)] =
ξ2∥k∥1
Bd,∥k∥1

Hek, ∀k ∈ Zd
≥0.

That is, each degree-k subspace Ωd,k is an eigenspace with eigenvalue ξ2k/Bd,k

and we can write (see Equation (2.1.6))

Kf =
∞∑
k=0

ξ2k
Bd,k

Pkf

We included the weights ξk to have a trace-class kernel Tr(K) =
∑

k≥0 ξ
2
k <∞.

We now consider kernel ridge regression (KRR) using this kernel (see
Example 2.2.2). The following result is a direct application of the test error
characterization in [MMM22, MS24]:

2.4. EXAMPLES 51

Proposition 2.4.5. For every k ∈ N, there exists a constant Ck > 0 de-
pending only on k and coefficients {ξk}k≥0 such that for all d ≥ Ck and
Ckd

k ≤ n ≤ dk+1/Ck, the following holds.

For any h ∈ L2(γd), let f̂ be the KRR predictor with kernel (2.4.14) and
regularization parameter 0 ≤ λ ≤ Ck/n, trained on data (yi,xi)i∈[n], where
(xi)i∈[n] ∼iid γd and yi = h(xi) + εi with εi ∼ N (0, σ2ε) independently. Then,
with probability at least 1− Ck/d, the excess test error satisfies∣∣∣∥f̂ − h∥2γd − ∥P≥k+1h∥2γd

∣∣∣ ≤ Ck

(
dk

n
+

n

dk+1

)
· (∥h∥2γd + σ2ε). (2.4.15)

This result shows that, for any k ∈ N, kernel ridge regression with dk ≪
n≪ dk+1 samples learns the degree-k polynomial approximation P≤kh to the
target function h and nothing else. This staircase decay in the learning curve
was first shown in the case of inner-product kernels with data uniform on the
sphere in [GMMM21, Mis22]. Using results in [MS24], one can in fact show
a much tighter characterization of the test error than Proposition 2.4.5, in
terms of a non-asymptotic deterministic equivalent.

Applying this result to single-index models, we see that the bound in
Proposition 2.4.5 matches the lower bound in Theorem 2.4.3:

• If n = od(d
k), no kernel method can learn more than the degree-(k− 1)

polynomial approximation P≤k−1f∗ to the target function f∗.

• If n = ωd(d
k), kernel ridge regression with kernel (2.4.14) does learn the

degree-k polynomial approximation P≤kf∗.

In fact, Proposition 2.4.5 applies to any target function in L2(γd), not just
single-index model. Consider the hypothesis class H = Ωd,≤k of all polynomi-
als of degree at most k. Then, KRR learns this class with n = Θd(d

k) samples.
One can show that this is information-theoretically optimal: n = Ωd(d

k) sam-
ples are necessary to learn a subspace of dimension Θ(dk). In this sense, kernel
methods are optimal for learning all degree-k polynomials in high dimensions.

The above results show that for kernel methods, learning a degree-k poly-
nomial approximation to a single-index model is as hard as learning all degree-
k polynomials. Kernel methods do not exploit the fact that f∗(⟨w,x⟩) de-
pends only on a one-dimensional projection of the data. That is, they are
not adaptive to the low-dimensional structure of the data.

We will return to this point in Section 2.4.3.

52 CHAPTER 2. KERNEL METHODS

Remark 2.4.6 (Computational complexity of the above kernel method).
You might notice that computing the kernel (2.4.14) involves an infinite sum:
it does not have a closed-form expression. It does not have a closed form
solution. Fortunately, for sample size n = O(dk), it suffices to truncate the
sum to terms with ∥k∥1 ≤ k to achieve the same statistical guarantees as
Proposition 2.4.5. Computing the truncated kernel takes Θ(dk) and the total
runtime of KRR scales as Θd(n

2dk)—the cost of computing the full n × n
empirical kernel matrix Kn = (K(xi,xj))ij∈[n].

2.4.2 Sparse functions on the hypercube

Let’s now consider the class H(d)
Sp of sparse functions on the hypercube, where

each regression function is of the form:

hS(x) := f∗(xS), with S ∈ P([d], P),

where f∗ : {±1}P → R is a fixed link function, P([d], P) is the set of size-P
ordered subsets of [d], and xS = (xi)i∈S ∈ {±1}P . Again, we identify each

distribution DS ∈ H(d)
Sp with its corresponding regression function hS.

Throughout, we will use the notation νd := Unif({±1}d).

Function space over the Hypercube. We first recall the Fourier-Walsh
basis of L2(νd). For each (unordered) subset U ⊆ [d], define the Fourier
function (also known as parity function over U)

χU(x) =
∏
i∈U

xi. (2.4.16)

These polynomials form an orthonormal basis of L2(νd) with

Ex∼νd [χU(x)χU ′(x)] = δU=U ′.

Note that L2(νd) is a finite dimensional function space of dimension 2d. We
define

Wd,k := span{χS : S ⊆ [d], |S| = k}, (2.4.17)

as the subspace spanned by degree-k monomials of x (note that x2i = 1, and
χU , |U | = k, are indeed all possible degree k monomial in x). Its dimension
is simply

Dd,k := dim(Wd,k) =

(
d

k

)
.

2.4. EXAMPLES 53

This leads to the orthogonal decomposition:

L2(νd) =
d⊕

k=0

Wd,k. (2.4.18)

Let Pk denote the orthogonal projection ontoWd,k. We will further introduce
P≤k the projection onto the subspace of polynomials of degree at most k in
x and P≥k = I− P≤k−1, that is the projection onto

Wd,≤k =
k⊕

s=0

Wd,s, Wd,≥k =
d⊕

s=k

Wd,s.

respectively.
Let’s decompose the link function f∗ : {±1}P → R into the Fourier basis

on [P]:

f∗(z) =
∑
U⊆[P]

αUχU(z),

where αU := Ez∼νP [f∗(z)χU(z)].

For any S ∈ P([d], P), the marginal distribution on the support is xS ∼ νP .
Thus, the regression function hS : {±1}d → R admits the decomposition in
the Fourier basis

hS(x) =
∑
U⊆[P]

αUχU(xS). (2.4.19)

In particular, the projection on degree-k monomials is simply

PkhS(x) =
∑

U⊆[P],|U |=k

αUχU(xS),

and

∥PkhS∥2νd =
∑

U⊆[P],|U |=k

α2
U , ∥P≥khS∥2νd =

∑
U⊆[P],|U |≥k

α2
U . (2.4.20)

Average excess test error: Fix a set of n covariate vectors (xi)i∈[n] ⊂
{±1}d. Let f̂S denote the predictor output by a kernel method trained
on labels generated by the target function hS. We are interested in the

average excess test error over the hypothesis class H(d)
Sp with uniform prior

S ∼ Unif(P([d], P)), defined as:

ES∼Unif(P([d],P))

[
Rexc(f̂S,DS)

]
= ES∼Unif(P([d],P))

[
∥f̂S − hS∥2νd

]
. (2.4.21)

54 CHAPTER 2. KERNEL METHODS

Lower bound. The proof of the dimension lower bound in this case is much
simpler than in the Gaussian single-index case. In particular, we directly
obtain a tight lower bound via the average pairwise correlation:

Theorem 2.4.7. Consider the problem of learning sparse functions on the
hypercube (1.2.3) with target function f∗ : {±1}P → R. There exists a con-
stant cP > 0 depending only on P such that the following holds. For any
kernel method, any n covariate vectors (xi)i∈[n] ⊂ {±1}d, and any integer
k ≤ P , the average excess test error (2.4.21) satisfies

ES∼Unif(P([d],P))

[
∥f̂S − hS∥2νd

]
≥
(
1− cP

n

dk

)
∥P≥kf∗∥2νP . (2.4.22)

Proof. Fix k ∈ N. For S = (i1, . . . , iP) ∈ P([d], P) and U = (j1, . . . , jk) ⊆ [P],
denote

SU = (ij1, . . . , ijk) ⊆ S,

that is the subset of S corresponding to the indices U ⊆ [P]. Then, we can
write equivalently the Fourier decomposition hS as

hS(x) =
∑
U⊆[P]

αUχSU
(x).

Thus, for S, S ′ ∈ P([d], P), we have

⟨hS,P≥khS′⟩νd =
∑

U,U ′⊆[P],|U |,|U ′|≥k

αUαU ′δSU=S′
U ′ ,

where SU = S ′U ′ is an equality in terms of unordered subsets. For S, U, U ′

fixed, when S ′ ∼ Unif(P([d], P)), then

ES′[δSU=S′
U ′] = PS′(SU = S ′U ′) =

{
0 if |U | ≠ |U ′|,(
d
P

)−1
if |U | = |U ′|.

Let us know compute the average pairwise correlation:

sup
S∈P([d],P)

ES′∼Unif(P([d],P)) [|⟨hS,P≥khS′⟩νd|]

≤
P∑
ℓ=k

∑
U,U ′⊆[P],|U |,|U ′|=ℓ

Cℓ
|αU ||αU ′|

dℓ
≤ CP

dk

∑
U⊆[P],|U |≥k

α2
U =

CP

dk
∥P≥kf∗∥2νP .

2.4. EXAMPLES 55

Plugging this bound into the dimension lower bound (2.3.6), we directly
obtain that, if the average excess test error satisfies

ES∼Unif(P([d],P))

[
∥f̂S − hS∥2νd

]
≤ (1− η)∥P≥kf∗∥2νP ,

then the number of training samples must satisfy

n ≥ cPd
kη.

Plugging this inequality in the previous display yields the desired inequality
(2.4.22).

This lower bound has the same interpretation as in the Gaussian single-
index setting (Theorem 2.4.3): kernel methods cannot do better than fitting
a degree-(k − 1) polynomial approximation to the target function P≤k−1f∗
unless n = Ωd(d

k).

Matching upper bound. Again, the lower bound in Theorem 2.4.7 is tight:
kernel ridge regression with inner-product kernel learns the degree-k polyno-
mial approximation P≤kf∗ to the target function f∗ with n = Ωd(d

k) samples.
Specifically, consider the inner-product kernel K(x,x′) = h(⟨x,x′⟩/d) where
the kernel function h : [−1, 1]→ R satisfies

h(⟨x,x′⟩/d) =
p∑

j=0

ξ2kP
(hyp)
k (⟨x,x′⟩),

where ξ2k = Dd,kEx∼νd

[
h(⟨1,x⟩/d)P (hyp)

k (⟨1,x⟩)
]
,

(2.4.23)

with ξ2k > 0 for all 0 ≤ k ≤ d, and Qhyp
k is a degree-k polynomial that satisfies

P
(hyp)
k (⟨x,x′⟩) = 1

B(d, k)

∑
U⊆[d],|U |=k

χS(x)χS(x
′), ∀x,x′ ∈ {±1}d.

In particular, note that5

Ex∼νd

[
P

(hyp)
k (⟨1,x⟩)P (hyp)

k′ (⟨1,x⟩)
]
=

δkk′

Dd,k
,

5Note that they satisfy the same ‘reproducing property’ as Gegenbauer polynomials:

E[P (hyp)
k (⟨x,w⟩)P (hyp)

k (⟨w,x′⟩)] = P
(hyp)
k (⟨x,x′⟩)/Dd,k. See Appendix A.1 for background on Gegen-

bauer polynomials.

56 CHAPTER 2. KERNEL METHODS

and {P (hyp)
k }dk=0 forms an orthogonal basis with respect to ⟨1,x⟩ (a shifted

and rescaled binomial distribution Bin(d, 1/2)). They are known as Kravchuk
polynomials.

Thus, each degree-k subspaceWd,k is an eigenspace with eigenvalue ξ2k/Dd,k

and the integral operator satisfies

Kf =
d∑

k=0

ξ2k
Dd,k

Pkf, ∀f ∈ L2(νd).

The following result was proved in [MMM22, Mis22]:

Proposition 2.4.8. For every k ∈ N with k ≤ d/2, there exists a constant
Ck > 0 depending only on k and coefficients {ξk}dk=0 such that for all d ≥ Ck

and Ckd
k ≤ n ≤ dk+1/Ck, the following holds.

For any6 h ∈ Wd,≤⌊k⌋, let f̂ be the KRR predictor with kernel (2.4.23) and
regularization parameter 0 ≤ λ ≤ Ck/n, trained on data (yi,xi)i∈[n], where
(xi)i∈[n] ∼iid νd and yi = h(xi) + εi with εi ∼ N (0, σ2ε) independently. Then,
with probability at least 1− Ck/d, the excess test error satisfies

∣∣∣∥f̂ − h∥2νd − ∥P≥k+1h∥2νd
∣∣∣ ≤ Ck

(
dk

n
+

n

dk+1

)
· (∥h∥2νd + σ2ε). (2.4.24)

Again, [MS24] show a much tighter characterization of the test error in
terms of non-asymptotic deterministic equivalent.

Combining Theorem 2.4.7 and Proposition 2.4.8, we see that for n =
od(d

k), no kernel methods can learn more than the degree-(k− 1) polynomial
approximation P≤k−1f∗ to the target function f∗, while KRR with inner-
product kernel learns the degree-k polynomial approximation P≤kf∗ when
n = ωd(d

k). In fact, Proposition 2.4.8 applies to any target function: KRR
learns the class H = Wd,≤k of all polynomials of degree at most k with n =
Θd(d

k) samples—which is information-theoretically optimal. Thus, learning
a degree-k polynomial approximation to a sparse function on the hypercube is
as hard as learning all degree-k polynomials. Kernel methods cannot exploit
the sparsity assumption on f∗ in this setting.

6In fact, we can consider any h ∈ L2(νd): KRR will also learn ∥P≥d−kh∥2νd
, which are subspaces of

dimension O(dk).

2.4. EXAMPLES 57

2.4.3 Summary

We conclude by summarizing the main insights about kernel methods that
emerge from the dimension lower bound and its application to Gaussian
single-index models and sparse functions on the hypercube.

Curse of dimensionality. The dimension lower bound implies that with
n samples a kernel method can effectively learn only a O(n)-dimensional
subspace of L2(PX) that depends on the covariate vectors and the kernel, but
not on the target function. In our two examples, the degree-k polynomial
subspace has dimension Θd(d

k). Hence:

• Learning degree-k components require n = Θd(d
k) samples, and with

that many samples, kernel methods learn all degree-k polynomials (not
just single-index or sparse ones). This is information-theoretically op-
timal when requiring to learn all degree-k functions.

• Kernel methods do not leverage the additional low-dimensional struc-
ture (one-dimensional index or P -sparse support). They adapt to smooth-
ness (polynomial degree) but not to intrinsic dimension (single-index or
sparsity). This adaptivity gap is a central theme in Bach’s book [Bac24].

Thus, kernel methods require much more samples than the information-
theoretic optimal Θd(d) and Θd(log(d)) samples for single-index and sparse
functions respectively. Their sample complexity depend on the degree of the
link function—they are cursed by dimensionality. Can we do better than
kernel methods? Is there an efficient procedure that achieve optimal sample
complexity?

Two-steps procedure. If we assume that a degree-k polynomial is a single-
index or a P -sparse function, then one can vastly outperform kernel methods
with a simple two-step scheme: (1) Estimate the low-dimensional support,
and (2) Fit a polynomial restricted to that support. The first step typically
depend on milder properties of the link function than its degree, while the
second step is a low-dimensional fitting step and can be done efficiently.

• (Gaussian single-index models.) Assume µ1 = EG∼γ1[f(G)G] ̸= 0 for
simplicity. Estimate the index via

ŵ =
v̂

∥v̂∥2
, v̂ =

1

n

n∑
i=1

yixi.

58 CHAPTER 2. KERNEL METHODS

Standard concentration yields |⟨ŵ,w∗⟩| ≥ 1−C
√
d/n with high prob-

ability. We can then fit a degree-k polynomial f̂ on the scalar feature
⟨ŵ,x⟩ efficiently. This two-step procedure learn degree-k single-index
polynomials with Θd(d) samples (information-theoretically optimal),
compared to Θd(d

k) for kernels.

• (Sparse functions on the hypercube.) Assume for simplicity that α{i} =
Ez∼νP [f∗(z)zi] ̸= 0, for all i ∈ [P]. For each coordinate j ∈ [d], one can
compute the empirical correlation

T̂{j} =
1

n

n∑
i=1

yixij,

and let Ŝ be the P indices with largest |T̂{j}|. Hoeffding’s inequality
plus a union bound give support recovery with n = Θd(log(d)) with
high probability. Fitting the degree-k polynomial on the P -dimensional
support then only require Θd(1) samples. This two-steps procedure
learn P -sparse degree-k polynomials in Θd(log(d)) samples, compared
to Θd(d

k) for kernels.

More generally, one can design statistical procedure—but not necessary
computationally efficient—that match kernels in the worst case over polyno-
mials and adapt to low-dimensional support when present [Bac17, Bac24].

Fixed features vs. feature learning. Kernel methods use fixed features :

• A predetermined ‘representation’ Φ(x);

• Learning a model only in the span {Φ(xi)}i∈[n].

In contrast, the previous paragraph suggests that one can vastly improve the
performance by adapting the representation to the task at hand. One can
learn ‘good’ features by training a parametric representation ΦW jointly with
the predictor. For a two-layer network with M units:

ΦW = (σ(⟨wj,x⟩))j∈[M] ∈ RM , f(x;θ,W) =
M∑
j=1

θjσ(⟨wj,x⟩).

• IfW is fixed and only θ is trained, we recover a kernel method (learning
in a fixed feature span).

2.4. EXAMPLES 59

• If both θ and W are trained, gradient-based methods may align fea-
tures with the task structure (e.g., wj aligning with w∗ or concentrat-
ing on the active coordinates S∗). In effect, the algorithm learns good
features—a good representation of the data—and emulates the above
two-step procedure implicitly (and automatically).

While a complete theory is still developing, both theoretical results and
numerical experiments indicate that gradient algorithms on neural networks
can adaptively learn good representations of the data, such as low-dimensional
or sparse features, and substantially outperform fixed-feature kernels. We will
show such examples in the next chapter when we will consider noisy gradient
descent algorithms.

60 CHAPTER 2. KERNEL METHODS

Chapter 3

Noisy gradient descent

In this chapter, we study a simplified model of gradient-based optimization
algorithms, which we refer to as noisy gradient descent. In this model, the
algorithm has access to population gradients—i.e., gradients of the population
loss—perturbed by additive Gaussian noise. Although it is not a statistical
algorithm—that is, an algorithm that operates on finite samples—, noisy
gradient descent captures some key aspects of stochastic gradient descent
(SGD), the backbone of modern machine learning. Furthermore, the class of
noisy gradient descent algorithms falls in the broader class of statistical query
(SQ) algorithms, which we explore in the next chapter.

Our goal here is to establish a lower bound on the number of gradient steps
required by noisy gradient descent to achieve small test error. To this end, we
follow a ‘junk flow’ argument developed by Abbe and Sandon [AS20], which
compares the algorithm’s output on real data to its output on corrupted
data—where the labels have been (partially) replaced with random noise.
This argument illustrates a general strategy for proving lower bounds: if an
algorithm cannot distinguish true data from corrupted data, it cannot learn
beyond a certain precision.

The presentation and proofs in this chapter will follow [ABA22].

3.1 Noisy gradient descent

We consider a general parametrized model f(·;θ) : X → R, with parameters
θ ∈ Rp, and only assume that ∇θf(x;θ) exists for every x ∈ X and θ ∈ Rp

(or almost everywhere). For example, f(·;θ) may represent a neural network
with weights θ, such as the two-layer neural network (1.1.5).

61

62 CHAPTER 3. NOISY GRADIENT DESCENT

We focus on the squared loss ℓ(y, ŷ) = (y − ŷ)2 and assume data points
(y,x) ∼ D ∈ P(R×X). The population (or test) loss is given by

R(θ;D) = E(y,x)∼D
[(
y − f(x;θ)

)2]
. (3.1.1)

Let h(x) := ED[y|x] denote the regression function. Then the excess risk of
a predictor f(·;θ) is

Rh(θ) := Ex∼PX

[(
h(x)− f(x;θ)

)2]
= ∥h− f(·;θ)∥2L2.

Stochastic Gradient Descent (SGD). A common approach to minimize
the test error is to run online SGD on the population loss (3.1.1): starting
from an initial (random) parameter θ0 ∼ ρ0 ∈ P(Rp), we update iteratively
the parameter by sampling a new data point (yk,xk) ∼ D at each step (so
that {(yk,xk)}k≥0 are iid):

θk+1 = θk − ηk∇θℓ(yk, f(xk;θ
k))

= θk + ηk(yk − f(xk;θ
k))∇θf(xk;θ

k),
(3.1.2)

where ηk > 0 is the step size at step k. This is often referred to as one-pass
SGD, where each training data point is used only once during training. This
is a reasonable assumption for large datasets, where each sample is only seen
at most a few times.

Note that we can rewrite the update rule (3.1.2) as

θk+1 = θk − ηk ∇θR(θk;D)︸ ︷︷ ︸
population gradient

−ηk
{
∇θℓ(yk, f(xk;θ

k))−∇θR(θk;D)
}︸ ︷︷ ︸

mean zero independent variable

.

The first term is deterministic conditional on θk while the second term is a
mean-zero noise vector that introduces randomness into the trajectory. Di-
rectly analyzing this trajectory is difficult. Instead, we consider a stylized
model where this noise term is replaced by independent Gaussian noise vec-
tors ξk ∼ N (0, τ 2Ip). This defines the noisy gradient descent model.

Gradient clipping. We will further consider clipping the gradient, which
is often used in practice to avoid instability from exploding gradients. That
is, we replace ∇θf(xk;θ

k) in the gradient update by its projection onto an
ℓ2 ball of radius R:

ΠB(0,R)[∇θf(xk;θ
k)],

3.1. NOISY GRADIENT DESCENT 63

where B(0, R) = {z : ∥z∥2 ≤ R} ⊂ Rp. This will ensure that the magnitude
of the update is controlled relative to the noise level τ (see Chapter 4). Define
the clipped population gradient:

g(θ) = − E(x,y)∼D

[(
y − f(x;θ)

)
ΠB(0,R)[∇θf(x;θ)]

]
= − Ex

[(
h(x)− f(x;θ)

)
ΠB(0,R)∇θf(x;θ)

]
.

(3.1.3)

Note that the population gradient (and therefore the parameters θk) only
depend on the data distribution D through the target function h. We will
denote gh(θ) := g(θ) and θk

h := θk to emphasize this dependency.

Noisy Gradient Descent. Putting everything together, noisy gradient de-
scent with respect to the target function h is defined as follows:

• Initialize θ0 ∼ ρ0.

• For each step k, update:

θk+1
h = θk

h − ηkgh(θk) + ηkξ
k, (3.1.4)

where ξk ∼ N (0, τ 2Ip) are independent Gaussian noise vectors, and
gh(θ

k) are the clipped population gradient (3.1.3).

By using the randomness in ξk, this model will allow for simple lower bounds.

Remark 3.1.1 (Gaussian noise and batch-size). Consider online SGD with
batch size b—that is, at each step, we draw b new samples from the population

distribution (y
(k)
i ,x

(k)
i)i∈[b] ∼iid D and compute the empirical gradient on these

b samples (see equation (1.1.8)). The statistical noise contribution to the
update is given by

∆k(θ
k) :=

1

b

b∑
i=1

(y
(k)
i − f(x

(k)
i ;θk))ΠB(0,R)[∇θf(x

(k)
i ;θk)]

− ED
[
(y − f(x;θk))ΠB(0,R)[∇θf(x;θ

k)]
]
,

and each entry as variance of order 1/b. Thus, we can heuristically interpret

τ as being related to the batch size of online SGD, with τ = 1/
√
b.

64 CHAPTER 3. NOISY GRADIENT DESCENT

3.2 Lower bound via junk flow

In this section, we establish a lower bound on the number of steps required
for noisy gradient descent to achieve low test error when learning a class of
target functions H ⊆ L2(PX). Consider a prior µH ∈ P(H) over these target
functions. Our lower bound will hold with high probability over the random
choice of target function h ∼ µH and the randomness in the optimization
trajectory.

The difficulty of learning the function classH using noisy gradient descent
is governed by its correlation alignment complexity (see [AS20, ACHM22] for
earlier notions). This notion captures how well the target functions align
with any fixed direction in the function space.

Definition 3.2.1 (Correlation alignment complexity). Let PX ∈ P(X) be
the input distribution, and µH ∈ P(H) be the prior distribution over target
functions h ∈ H ⊆ L2(PX). Let g ∈ L2(PX) be a reference function. The
correlation alignment complexity of (µH, g) is defined as

AlignCor(µH, g) =

[
sup

∥ϕ∥L2(PX)≤1
Eh∼µH

[
⟨ϕ, h− g⟩2L2(PX)

]]−1
. (3.2.1)

For simplicity, we will write AlignCor(µH) when g ≡ 0.

Intuitively, large alignment complexity means that the target functions
in H (centered by a reference function) are nearly orthogonal to any fixed
direction. We will come back to this notion in Chapter 4 when we discuss
Statistical Query algorithms, and justify the name ‘correlation alignment’.

We now state the main result of this chapter: a lower bound on the
performance of noisy gradient descent in terms of this alignment complexity.

Theorem 3.2.2 ([ABA22, Theorem A.4]). Fix an input distribution PX ∈
P(X) and a parametrized model f(·;θ) : X → R, with parameters θ ∈ Rp.
Let θT

h be the (random) parameter after T steps of noisy gradient descent
(3.1.4) with target function h ∈ L2(PX), initial distribution ρ0 ∈ P(Rp), step
sizes {ηk}k≥0, clipping radius R > 0, and noise level τ .

Then for any prior µH ∈ P(H) over target functions, any offset g ∈
L2(PX), and any ε > 0, we have

Ph∼µH,θT
h

[
Rh(θ

T
h) ≤ ∥h− g∥2L2 − ε

]
≤ R

2τ

√
T

A
+

1

ε · A
, (3.2.2)

3.2. LOWER BOUND VIA JUNK FLOW 65

where A := AlignCor(µH, g) is the correlation alignment complexity from Defi-
nition 3.2.1.

This result shows that unless the number of steps T is sufficiently large,
noisy gradient descent cannot significantly improve upon the trivial predictor
that always outputs g. In particular, if A is large, then the test error remains
lower bounded by ∥h − g∥2L2 with high probability over h ∼ µH and the
randomness in the trajectories, unless

T ≳
(τ
R

)2
AlignCor(µH, g). (3.2.3)

Here τ/R can be interpreted as the gradient precision (see Remark 3.1.1).
Thus if the alignment complexity A is large, learning requires either a large

number of steps T or a small gradient precision τ/R. We will see later that
this style of lower bound is typical when considering SQ algorithms (Chapter
4), where τ corresponds to the precision of the query expectations.

Example 3.2.3. Consider H = {h1, . . . , hN} a set of N orthonormal target
functions: ⟨hi, hj⟩L2 = δij and ∥hi∥L2 = 1 for all i ̸= j. Taking µH to be
uniform over H,

sup
∥ϕ∥L2≤1

Eh∼µH

[
⟨ϕ, h⟩2L2

]
= sup
∥ϕ∥L2≤1

1

N

N∑
i=1

⟨hi, ϕ⟩2 =
1

N
.

Thus AlignCor(µH) = N , and noisy gradient descent cannot achieve small
average test error unless T (R/τ 2) ≳ N .

Proof via ‘junk flow’. We now outline the proof of Theorem 3.2.2 and
defer the proof of the technical lemmas to Section 3.3.

The central idea is to compare two noisy gradient descent trajectories:
one trained on the true target function h, and one trained on a fixed ‘junk’
target function g. If the two trajectories remain close in distribution, then
the algorithm cannot distinguish whether it is learning h or g. Since the
junk flow has no information about the true target function h, its test error
remains high. Hence, unless the trajectories diverge, the algorithm cannot
achieve low test error.

Specifically, we consider:

66 CHAPTER 3. NOISY GRADIENT DESCENT

• Noisy GD trajectory on true target h: Let θ0
h, . . . ,θ

T
h be the trajectory

of noisy gradient descent (3.1.4) with target h. That is, we initialize
with θ0

h ∼ ρ0 and updated the parameters via

θk+1
h = θk

h − ηkgh(θk
h) + ηkξ

k, where ξk ∼ N (0, τ 2Ip).

• Noisy GD trajectory on junk target g: Let θ0
g , . . . ,θ

T
g be the trajectory

of noisy gradient descent (3.1.4) with junk target g ∈ L2(PX), initialized
with θ0

g ∼ ρ0 and updated via

θk+1
g = θk

g − ηkgg(θk
g) + ηkξ̃

k, where ξ̃k ∼ N (0, τ 2Ip).

Theorem 3.2.2 is then a consequence of the following two lemmas.
The first lemma shows that the distributions of θT

h and θT
g stays close

to each other (in total variation distance, see Definition 3.3.1) with high
probability over h ∼ µH.

Lemma 3.2.4 (Proximity of the two trajectories). Under the setting of The-
orem 3.2.2, we have

Eh∼µH

[
TV(θT

g ,θ
T
h)
]
≤ R

2τ

√
T

AlignCor(µH, g)
, (3.2.4)

Equivalently (see Equation (3.3.3)), there exists a joint coupling of θT
h

and θT
g such that

Ph∼µH,θT
h ,θ

T
g

[
θT
h ̸= θT

g

]
≤ R

2τ

√
T

AlignCor(µH, g)
.

In words, if T ≪ (τ/R)2Align, then with high-probability over h ∼ µH and
noise in the algorithm, the outputs θT

h and θT
g of noisy gradient descent are

indistinguishable.
The second lemma lower bound the test error on the junk flow trajectory.

Lemma 3.2.5 (Test error of the junk flow). Under the setting of Theorem
3.2.2, we have for any ε > 0,

Ph∼µH,θT
g

[
Rh(θ

T
g) ≤ ∥h− g∥2L2(µX) − ε

]
≤ 1

ε · AlignCor(µH, g)
.

3.3. PROOFS OF AUXILIARY LEMMAS 67

The proofs of Lemma 3.2.4 and Lemma 3.2.5 can be found in Section 3.3.
Note that these proofs use very little about the specific form of the update
equation (3.1.4)—only the additive Gaussian noise structure—, and we will
generalize Lemma 3.2.4 to a broader class of algorithms in the next chapter.

We are now ready to prove Theorem 3.2.2:

Proof of Theorem 3.2.2. For any coupling between θT
h and θT

g , and for any
t > 0, we have

Ph∼µH,θT
h

[
Rh(θ

T
h) ≤ t

]
≤ Ph∼µH,θT

h ,θ
T
g

[
θT
h ̸= θT

g

]
+ Ph∼µH,θT

g

[
Rh(θ

T
g) ≤ t

]
.

Taking the optimal coupling, the first term is bounded in Lemma 3.2.4, while
the second term is bounded in Lemma 3.2.5.

3.3 Proofs of auxiliary lemmas

We first recall some definitions and standard properties of the total variation
(TV) distance and Kullback-Leibler (KL) divergence.

Definition 3.3.1 (Divergences between probability measures). Let P and Q
be two probability measures on a measurable space (Ω,F).

(1) (Total Variation distance.) The total variation distance between P and
Q is defined as

TV(P,Q) = sup
A∈F
|P (A)−Q(A)|. (3.3.1)

(2) (Kullback–Leibler divergence.) Further assume that1 P ≪ Q . The
Kullback–Leibler divergence between P and Q is defined as

KL(P ||Q) =
∫
Ω

log

(
dP

dQ
(ω)

)
dP (ω), (3.3.2)

where dP
dQ is the Radon-Nikodym derivative of P relative to Q.

With a slight abuse of notations, we will write TV(X, Y) and KL(X||Y)
instead of TV(P,Q) and KL(P ||Q) when X ∼ P and Y ∼ Q, and sometimes

1P is dominated by Q, denoted P ≪ Q, if and only if for all A ∈ F , Q(A) = 0 implies P (A) = 0.

68 CHAPTER 3. NOISY GRADIENT DESCENT

TV(P (X), Q(Y)). In particular, we have the following equivalent characteri-
zation of the TV distance

TV(X, Y) = inf
coupling(X,Y)

P(X ̸= Y), (3.3.3)

where coupling(X, Y) is the set of joint distribution over (X, Y) with marginals
P and Q.

We next present some basic properties of TV and KL which will be useful
when proving the auxiliary lemmas.

Proposition 3.3.2 (Properties of TV and KL).

(a) (Pinsker’s inequality.) We have

TV(P,Q) ≤
√

1

2
KL(P ||Q). (3.3.4)

(b) (Data processing inequality.) Let P and Q be two distributions for a
pair of variables (X, Y). We have

TV(P (X), Q(X)) ≤ TV(P (X, Y), Q(X, Y)). (3.3.5)

(c) (Chain rule for KL.) We have

KL(P (X, Y)||Q(X, Y))

= KL(P (X)||Q(X)) + Ex∼P [KL(P (Y |X = x)||Q(Y |X = x))] .
(3.3.6)

The above properties and their proofs can be found in any information
theory textbook (e.g., [Duc24, Chapter 2]).

Proof of Lemma 3.2.4. Write θ≤Th = (θ0
h, . . . ,θ

T
h) and θ≤Tg = (θ0

g , . . . ,θ
T
g) the

two trajectories, and denote L(θ≤Th) and L(θ≤Tg) their laws. We first bound

the KL divergence between θ≤Tg and θ≤Th :

KL(L(θ≤Tg)||L(θ≤Th))

(a)
= KL(L(θ0

g)||L(θ0
h)) +

T−1∑
k=0

Eθ≤k
g

[
KL(L(θk+1

g |θ≤kg)||L(θk+1
h |θ≤kh = θ≤kg))

]
(b)
=

T−1∑
k=0

Eθ∼L(θk
g)

[
KL(L(θk+1

g |θk
g = θ)||L(θk+1

h |θk
h = θ))

]
,

3.3. PROOFS OF AUXILIARY LEMMAS 69

where we used (a) the KL divergence chain rule (Proposition 3.3.2.(3)), and
(b) L(θ0

g) = L(θ0
h) = ρ0 and the Markov property of GD training. By

definition of the update rule in noisy GD (3.1.4), we have

θk+1
g

∣∣∣
θk
g=θ
∼ N (θ − ηkgg(θ), η2kτ 2Ip),

θk+1
h

∣∣∣
θk
h=θ
∼ N (θ − ηkgh(θ), η2kτ 2Ip).

Thus using the formula of KL divergence between two Gaussians2, we deduce

KL(L(θ≤Tg)||L(θ≤Th)) =
T−1∑
k=0

1

2τ 2
Eθ∼L(θk

g)

[
∥gg(θ)− gh(θ)∥22

]
. (3.3.7)

By definition of the clipped population gradients, we have

gg(θ)− gh(θ) = Ex

[
(h(x)− g(x))ΠB(0,R)[∇θf(x;θ)]

]
,

so that,

Eh∼µH

[
∥gg(θ)− gh(θ)∥22

]
=

p∑
i=1

Eh∼µH

[
⟨h− g,ΠB(0,R)[∇θf(·;θ)]i⟩2L2(X)

]
(a)

≤
p∑

i=1

∥ΠB(0,R)[∇θf(·;θ)]i∥2L2

AlignCor(µH, g)

(b)

≤ R2

AlignCor(µH, g)
,

where we used (a) the definition of the correlation alignment complexity,
and (b) ∥ΠB(0,R)[∇θf(x;θ)]∥22 ≤ R2 by definition. Injecting this bound into
equation (3.3.7), we obtain the upper bound

Eh∼µH

[
KL(L(θ≤Tg)||L(θ≤Th))

]
=

T−1∑
k=0

1

2τ 2
Eθ∼L(θk

g)

[
Eh∼µH

[
∥gg(θ)− gh(θ)∥22

]]
≤ T

R2

2τ 2
· 1

AlignCor(µH, g)
.

(3.3.8)

2We have KL(N (µ, κ2Ip)||N (µ′, κ2Ip)) =
1

2κ2 ∥µ− µ′∥22.

70 CHAPTER 3. NOISY GRADIENT DESCENT

Finally, we conclude the proof of this lemma by observing that

Eh∼µH

[
TV(L(θT

g),L(θT
h))
] (a)

≤ Eh∼µH

[
TV(L(θ≤Tg),L(θ≤Th))

]
(b)

≤ Eh∼µH

[√
1

2
KL(L(θ≤Tg)||L(θ≤Th))

]
(c)

≤
√

1

2
Eh∼µH

[
KL(L(θ≤Tg)||L(θ≤Th))

]
(d)

≤ R

2τ

√
T

AlignCor(µH, g)
,

where we used (a) the data processing inequality (Proposition 3.3.2.(2)), (b)
Pinsker’s inequality (Proposition 3.3.2.(1)), (c) Jensen’s inequality, and (d)
the bound on KL divergence in (3.3.8).

Proof of Lemma 3.2.5. Define

φh(θ
T
g) := ⟨h− g, f(·;θT

g)− g⟩L2(X).

Recall that g is fixed and θT
g is independent of h ∼ µH. Therefore, by

definition of the alignment complexity,

Eh∼µH[φh(θ
T
g)

2] ≤ AlignCor(µH, g)
−1∥f(·;θT

g)− g∥2L2.

Denote E the event φh(θ
T
g)

2 ≤ ε∥f(·;θT
g) − g∥2L2 such that, by Marhov’s

inequality and the above display

P(Ec) = P
(
φh(θ

T
g)

2 > ε∥f(·;θT
g)− g∥2L2

)
≤ 1

ε · AlignCor(µH, g)
.

Let’s consider the excess test error. Under the even E , we have

Rh(θ
T
g) = ∥h− f(·;θT

g)∥2L2

= ∥h− g∥2L2 − 2φh(θ
T
g) + ∥g − f(·;θT

g)∥2L2

≥ ∥h− g∥2L2 − 2
√
ε∥g − f(·;θT

g)∥L2 + ∥g − f(·;θT
g)∥2L2

≥ ∥h− g∥2L2 − ε,

where on the last line, we optimized over δ := ∥g − f(·;θT
g)∥L2. We deduce

by contraposition that

P
[
Rh(θ

T
g) ≤ ∥h− g∥2L2 − ε

]
≤ P(Ec) ≤ 1

ε · AlignCor(µH, g)
,

3.4. EXAMPLES 71

which concludes the proof of the second lemma.

3.4 Examples

We now study learning Gaussian single-index models and sparse functions
on the hypercube using noisy gradient descent, and apply the correlation
alignment lower bound of Theorem 3.2.2.

3.4.1 Gaussian single-index models

For Gaussian single-index models, the complexity of noisy gradient descent is
governed by the information exponent of the link function f∗. This quantity
first appeared in [DH18] under the name order of degeneracy. The informa-
tion exponent was defined later in [AGJ21] as a property of the optimization
landscape. The information exponent reduces to the order of degeneracy for
the special case of Gaussian single-index models, and we adopt this latter
terminology as it has become more popular in the literature.

Definition 3.4.1 (Information exponent). For f∗ ∈ L2(γ1), the information
exponent of f∗ is defined as the degree of the first non-zero coefficient in its
Hermite expansion, that is

kI := kI(f∗) = min{k ≥ 1 : EG∼γ1[f∗(G)Hek(G)] ̸= 0}. (3.4.1)

The next proposition shows that the alignment complexity scales polyno-
mially in the ambient dimension d, with exponent depending on the informa-
tion exponent of f∗:

Proposition 3.4.2. Let kI be the information exponent of f∗ ∈ L2(γ1) and
let µH be the uniform distribution over hw := f∗(⟨w, ·⟩) induced by w ∼ γ̄d.
Then

AlignCor(µH, g∗) = Θd(d
kI/2), (3.4.2)

where g∗ ≡ EG∼γ1[f∗(G)] (constant predictor).

Proof Sketch. For each multi-index α ∈ Zd
≥0, Stein’s identity applied to each

factor Heαi
(xi) and the differentiation rule (Proposition 2.4.1.(ii)-(iii)) yield

E[Heα(x)Hek(⟨w,x⟩)] = E

∏
j∈[d]

∂αj

∂x
αj

j

Hek(⟨w,x⟩)

 = wα · k!δ∥α∥1=k,

72 CHAPTER 3. NOISY GRADIENT DESCENT

where we denoted wα :=
∏

j∈[d]w
αj

j .

Expanding ϕ ∈ L2(γd) in the multivariate Hermite basis gives

E[Hek(⟨w,x⟩)ϕ(x)] =
∑

α∈Zd
≥0,∥α∥1=k

cα
α!

wα, cα := E[Heα(x)ϕ(x)].

Recall that we denote the (univariate) Hermite coefficients of f∗ by µk =
E[f∗(G)Hek(G)]. Then

E[(f∗(⟨w,x⟩)− g∗(x))ϕ(x)] =
∞∑
k=1

µk
k!

∑
α∈Zd

≥0,∥α∥1=k

cα
α!

wα.

Thus, the average squared correlation decomposes as

Ew∼γ̄d
[
⟨hw − g∗, ϕ⟩2γd

]
=

∞∑
k1,k2=1

µk1
k1!

µk2
k2!

∑
α,β∈Zd

≥0,

∥α∥1=k1,∥β∥1=k2

cαcβ
α!β!

E[wα+β].

Using Wick’s formula, one can bound each of these expectations by

E[wα+β]√
α!β!

≤
(
C

d

)∥α∥1+∥β∥1
2

1[α+ β ≡ 0 mod 2] (3.4.3)

Injecting this upper bound in the above display, one can show using Cauchy-
Schwarz inequality and a counting argument that

Ew∼γ̄d
[
⟨hw − g∗, ϕ⟩2γd

]
≤

∞∑
k1,k2=1

|µk1|
k1!

|µk2|
k2!

∑
α,β∈Zd

≥0,∥α∥1=k1,∥β∥1=k2
α+β≡0 mod 2

|cα||cβ|√
α!β!

(
C

d

)k1+k2
2

≤
∞∑
k=1

(C/d)k/2
µ2k
k!
∥Pkϕ∥2γd

(3.4.4)

We provide the detailed proof of bounds (3.4.3) and (3.4.4) in Lemma A.2.4,
Appendix A.2.2.

Taking the supremum over ∥ϕ∥γd ≤ 1 in the above display yields

sup
∥ϕ∥γd≤1

Ew∼γ̄d
[
⟨hw − g∗, ϕ⟩2γd

]
≤ C · sup

k≥1

{
µ2k
k!
(C/d)k/2

}
= Θd(d

−kI/2),

3.4. EXAMPLES 73

where kI is the information exponent of f∗. One can show similarly a lower
bound by setting ϕ that is a pure degree-kI Hermite polynomial with uniform
coefficient cα = 1/

√
Bd,k, which concludes the proof.

Applying Theorem 3.2.2, we obtain the following lower bound on learning
Gaussian single-index models with noisy gradient descent:

Corollary 3.4.3. Let f∗ ∈ L2(γ1) be a link function with information expo-
nent kI. For a parametrized model f(·;θ) : X → R with parameters θ ∈ Rp,
let θT

w be the parameter after T steps of noisy gradient descent (3.1.4) on
the target hw = f(⟨w, ·⟩), with initialization ρ0 ∈ P(Rp), step sizes {ηs}s≥0,
clipping radius R > 0, and noise level τ .

There exists a constant C > 0 (depending only on f∗), such that for any
δ ∈ (0, 1),

∥hw − f(·;θT
w)∥2γd ≥ ∥P≥1f∗∥

2
γ1
− C

δ
d−kI/2, (3.4.5)

with probability at least 1 − δ over w ∼ γ̄d and the noisy GD randomness,
provided

T

(
R

τ

)2

≤ δ2

C
dkI/2. (3.4.6)

In particular, to outperform the trivial constant predictor g∗ := Eγ1[f∗(G)],
noisy gradient descent needs

T (R/τ)2 ≳ dkI/2.

Remark 3.4.4 (Sharper exponent via spherical harmonics). One can refine
the lower bound using the spherical harmonic basis (Appendix A.1):

T (R/τ)2 =

{
Ωd(d

kI+1

2) if kI is odd,

Ωd(d
kI
2 +1) if kI is even.

(3.4.7)

The proof is also much simpler and only uses properties of Gegenbauer poly-
nomials. See Appendix A.2.2 and Lemma A.2.5. For reasons we will discuss
in the next chapter, we conjecture that when kI is odd, the true lower bound
is Θd(d

max(2,kI/2+1)); the correlation alignment bound misses an additional
√
d

factor in that case.

74 CHAPTER 3. NOISY GRADIENT DESCENT

A first online SGD algorithm. Consider online SGD (mini-batch size b,
cf. Remark 3.1.1) on

min
θ∈Sd−1

R(θ) := E(y,x)∼Dw

[
(y − f∗(⟨θ,x⟩))2

]
, (3.4.8)

i.e., a one neuron model f(·;θ) := f∗(⟨·,θ⟩), θ ∈ Rd. Expanding f∗ in
Hermite polynomials (cf. (2.4.11)), the landscape near random initialization
θ0 ∼ γ̄d—so that ⟨w,θ0⟩ ≍ d−1/2 with high probability—behaves as

R(θ) = 2∥P≥1f∗∥2γ1 + σ2ε −Θ(⟨w,θ⟩kI),

so that the projection of the gradient at initialization on the signal direction
satisfies

|⟨w,∇θR(θ0)⟩| ≈ |⟨w,θ0⟩|kI−1 ≍ d−
kI−1

2 .

To escape this bad initialization and converge to zero test error, Ben Arous et
al. [AGJ21] showed that the number of online SGD iterations needed obeys3

b · T =


Θd(d) if kI = 1,

Θ̃d(d) if kI = 2,

Θ̃d(d
kI−1) if kI ≥ 3,

(3.4.9)

where the batch size is taken b = Od(d
max(1,kI−1)). Adapting [AGJ21] to noisy

GD with clipping R = Θ(
√
d) yields the same complexity with b replaced by

1/τ 2. Hence this noisy GD algorithm achieves

T (R/τ)2 = Θ̃d(d
max(2,kI)),

matching the lower bounds only for kI ∈ {1, 2} (Remark 3.4.4). Joshi et
al. [JKMS25] provides the following interpretation: the suboptimality for
kI ≥ 3 stems from ignoring the radial component ∥x∥2. If one normalizes
the input to z := x/∥x∥2 ∼ γ̄d (direction-only information), the correlation-
alignment complexity becomes Θd(d

max(2,kI)). In that restricted class, the
above online SGD algorithm (3.4.8) is optimal.

3Here, Θ̃d hides polylog factors in d. That is, T = Θ̃d(f(d)) if T = Θd(f(d) log
C(d)) for some constant

C ≥ 0.

3.4. EXAMPLES 75

Landscape smoothing. The previous online SGD algorithm can be mod-
ified to achieve optimal complexity using landscape smoothing [BCRT20,
DNGL23]. This approach smooths the landscape by averaging the loss over
a small spherical neighborhood:

min
θ∈Sd−1

Eu∼γ̄d

[
R
(

θ + λu

∥θ + λu∥2

)]
= min

θ∈Sd−1
Eu∼γ̄d

[
ED

[(
y − f∗

(
θ + λu

∥θ + λu∥2
· x
))2

]]
.

Damian et al. [DNGL23] showed that, with a suitable λ, the required number
of online SGD steps drops to b · T = Θ̃d(d

kI/2). Intuitively, averaging reduces
the noise while preserving the signal direction. We refer to [BCRT20] for a dis-

cussion. Taking R =
√
d and τ = 1/

√
b gives T (R/τ)2 = Θ̃d(d

kI/2+1), which
now matches the lower bound rate. However, the update on the smoothed
loss cannot be stated directly as a noisy GD step.

Matching upper bound. Joshi et al. [JKMS25] exploited the harmonic
decomposition of L2(γd) to design an optimal online SGD objective (simplified
here):

min
θ∈Sd−1

R(θ) := E(y,x)∼Dw

[
(y − f(x;θ))2

]
, (3.4.10)

where the model is chosen to be

f(x;θ) =

{
ξ1(∥x∥2)⟨θ,x⟩+HekI(⟨θ,x⟩) if kI is odd,

ξ2(∥x∥2)He2(⟨θ,x⟩) if kI is even,

with carefully chosen radial functions ξ1, ξ2. Then, the parameter θ converges
to ±w in b · T = Θ̃d(d

kI/2) steps, and noisy GD on this objective attains the
optimal complexity

T (R/τ)2 = Θ̃d(d
kI/2+1).

3.4.2 Sparse functions on the hypercube

The complexity of learning sparse functions on the hypercube with noisy GD
is governed by the leap complexity of the link function f∗ : {±1}P → R. This
notion was introduced for the hypercube in [AAM22, AAM23], extended to
general product measures in [JMS24], and to Gaussian multi-index models in
[AAM23, BBPV23, DKL+23].

76 CHAPTER 3. NOISY GRADIENT DESCENT

Leap complexity. Recall the Fourier-Walsh expansion

f∗(z) =
∑
U⊆[P]

αUχU(z), χU(z) =
∏
i∈U

zi,

and let U(f∗) := {U ⊆ [P] : αU ̸= 0} be the set of non-zero monomi-
als4. Given an ordered support S = (i1, . . . iP) ∈ P([d], P), write for U =
(j1, . . . , jk) ⊆ [P],

SU = (ij1, . . . , ijk) ⊆ S,

so the regression function hS(x) = f∗(xS) decomposes as

hS(x) =
∑
U⊆[P]

αUχSU
(x).

As discussed in Sections 1.2 and 2.4.3, learning in this setting reduces to
recovering the support S. A natural approach is to test correlations with
monomials. For any V ⊆ [d], define

T̂V =
1

n

n∑
i=1

yiχV (xi).

By orthogonality,

E[T̂V] = E[hS(x)χV (x)] =
∑
U⊆[P]

αU1[V = SU].

Let α∗ = min{|αU | : U ∈ U(f∗)}. A standard union bound plus Hoeffding’s
inequality shows that with n = Θd(log(d)), uniformly over all V ⊆ [d] with
|V | ≤ P ,

|T̂V | ≥ α∗/2 ⇐⇒ V = SU for some U ∈ U(f∗), (3.4.11)

with high probability. Hence, we can recover the support S with the following
sequential algorithm that grows a set of discovered indices using only such
correlation tests. Let I ⊆ [d] be the set of recovered indices. The algorithm
proceeds as follows:

1. Initialize I ← ∅.
4Note that we are assuming without loss of generality that all P coordinates are active. That is⋃

U∈U(f∗)
U = [P], so that the support is indeed of size P .

3.4. EXAMPLES 77

2. For k = 1, 2, . . . , P :

(a) Until no such sets exists, do the following. For each V = V1 ∪ V2
with V1 ⊂ I and V2 ⊂ [d] \ I such that |V2| ≤ k and |V | ≤ P ,

compute T̂V :

– If |T̂V | ≥ α∗/2, set I ∪ V2 ← I.
(b) Stop if |I| = P .

3. Output I.

With n = Θd(log(d)) samples, the algorithm returns I = S with high prob-
ability, by equation (3.4.11). We illustrate this algorithm on three examples
later in this section.

Define kℓ to be the largest k encountered by the algorithm when run with
noiseless statistics (n =∞, i.e., T̂V replaced by E[T̂V]). The total search cost
is Θd(d

kℓ): the bottleneck is finding the subset of the support that requires
recovering kℓ new coordinates simultaneously using correlation tests. Follow-
ing [AAM23], we will call kℓ the leap complexity of f∗. It is straightforward
to check that the leap complexity admits the following equivalent definition
directly on the set of non-zero monomials U(f∗):

[Change to leap exponent]

Definition 3.4.5 (Leap complexity). Let f∗ : {±1}P → R with non-zero
monomials U(f∗) = {U1, . . . , Ur}. The leap complexity of f∗ is defined as

kℓ := kℓ(f∗) = min
π∈Sr

max
j∈[r]
|Uπ(j) \ ∪j−1i=1Uπ(i)|. (3.4.12)

In words, kℓ is the smallest—over all orderings of the non-zero monomials—
possible value of the largest number of new coordinates that must be ‘leapt
over’ at some step to reconstruct the support. It exactly recover the largest
k that the above sequential support-recovery algorithm encounters.

Examples. Let S = (i1, . . . i5) ∈ P([d], 5) and consider:

h
(1)
S (x) = xi1xi2xi3xi4xi5,

h
(2)
S (x) = xi1 + xi1xi2 + xi1xi2xi3 + xi1xi2xi3xi4 + xi1xi2xi3xi4xi5,

h
(3)
S (x) = xi1 + xi1xi2xi3xi4 + xi2xi3xi4xi5,

(3.4.13)

with associated link functions f
(1)
∗ , f

(2)
∗ , f

(3)
∗ .

78 CHAPTER 3. NOISY GRADIENT DESCENT

• h
(1)
S (parity function): Only χS is active. One needs to recover all 5

indices at once. The leap complexity is kℓ(f
(1)
∗) = 5 and the total

search cost is Θd(d
5).

• h
(2)
S (vanilla staircase function [ABAB+21, AAM22]): Active monomials

form a ‘staircase’ and we can recover one new coordinate at a time; first
i1 using degree-1 test; then i2 via degree-2 tests containing i1; and so

on. The leap complexity is kℓ(f
(2)
∗) = 1 and the total search cost is

Θd(d).

• h
(3)
S : First, recover i1 from the degree-1 term; then the first degree-4

monomial gives {i2, i3, i4} simultaneously; finally the second degree-4

monomial identifies i5. The leap complexity is kℓ(f
(2)
∗) = 3 and the

total search cost is Θd(d
3).

Alignment complexity lower bound. We show that the noisy GD lower
bound matches the complexity of this optimal sequential support-recovery
algorithm (via correlation tests).

Specifically, consider a link function f∗ : {±1}P → R with leap complexity
kℓ. Intuitively, with complexity od(d

kℓ), noisy GD cannot go beyond fitting
those monomials that are discoverable using leap of size at most kℓ − 1. Let
U<kℓ(f∗) ⊊ U(f∗) be this subset of monomials: that is, U<kℓ(f∗) is the maximal
subset of U(f∗) such that the function with non-zero monomials U<kℓ(f∗) has
leap complexity at most kℓ−1. Define the ‘reachable part’ of the link function

f∗,<kℓ(z) =
∑

U∈U<kℓ
(f∗)

αUχU(z). (3.4.14)

For a support S ∈ P([d], P), write

hS,<kℓ = f∗,<kℓ(xS<kℓ
), S<kℓ :=

⋃
U∈U<kℓ

(f∗)

SU ,

so S<kℓ ⊂ S is exactly the subset of coordinates recoverable using leaps < kℓ.
Without loss of generality, fix S<kℓ = [P0] with P0 := |S<kℓ|, and consider

the class of supports that agree on these P0 coordinates:

P<kℓ([d], P) = {S ∈ P([d], P) : S<kℓ = [P0]}.

3.4. EXAMPLES 79

Define
H′ := {hS : S ∈ P<kℓ([d], P)}. (3.4.15)

We will bound the alignment complexity for the uniform prior over H′ with
reference function

g∗(x) := f∗,<kℓ(x[P0]),

i.e., the predictor that already fits all monomials supported on the discovered
coordinates [P0].

Lemma 3.4.6. Let kℓ be the leap complexity of f∗ : {±1}P → R and let µH′

be the uniform distribution over H′ in (3.4.15). Then

AlignCor(µH′, g∗) = Θd(d
kℓ), (3.4.16)

where g∗(x) = f∗,<kℓ(x[P0]).

Proof. Let U≥kℓ = U(f∗) \ U<kℓ. For every hS ∈ H′,

hS(x)− g∗(x) =
∑

U∈U≥kℓ

αUχSU
(x).

For such U , write U = U0 ∪ U1 with U0 := U ∩ [P0] and U1 := U \ U0. By
construction, |U1| ≥ kℓ, i.e., each remaining monomial contains at least kℓ
as-yet to be discovered coordinates.

If S ∼ Unif(P<kℓ([d], P)), then SU = SU0
∪ SU1

, with SU0
fixed and SU1

uniform over all
(
d−P0

|U1|
)
subsets of [d]/[P0]. For any ϕ ∈ L2(νd),

EhS∼µH′

[
⟨h− g∗, ϕ⟩2L2

]
≤ 2P

∑
U∈U≥kℓ

α2
UES

[
⟨χSU

, ϕ⟩2
]

≤ CP∥f∗∥2νP
∑

U∈U≥kℓ
(f∗)

∑
V⊂[d]\[P0],|V |=|U1|

⟨χS0∪V , ϕ⟩2L2P(SU1
= V)

≤ CP

∑
U∈U≥kℓ

(f∗)

1(
d−P0

|U1|
) ∑

V⊂[d]\[P0],|V |=|U1|

⟨χS0∪V , ϕ⟩2L2

≤ CP

dkℓ

∑
V⊆[d]

⟨χV , ϕ⟩2L2 =
CP

dkℓ
∥ϕ∥2νd,

where we used in the last line that |U1| ≥ kℓ for all U ∈ U≥kℓ(f∗). This gives

AlignCor(µH′, g∗) = Ωd(d
kℓ).

80 CHAPTER 3. NOISY GRADIENT DESCENT

We can show a matching upper bound O(dkℓ) on the alignment complexity
using a carefully choosing ϕ.

Applying Theorem 3.2.2 and averaging over all possible subsets S<kℓ, we
obtain the following lower bound on learning sparse functions on the hyper-
cube with noisy GD:

Corollary 3.4.7. Let f∗ : {±1}P → R be a link function with leap complexity
kℓ. For a parametrized model f(·;θ) : X → R with parameters θ ∈ Rp, let θT

S

be the parameter after T steps of noisy gradient descent (3.1.4) on the target
hS(x) = f(xS), with initialization ρ0 ∈ P(Rp), step sizes {ηs}s≥0, clipping
radius R > 0, and noise level τ .

Then there exists a constant C > 0 (depending only on f∗), such that for
any δ ∈ (0, 1),

∥hS − f(·;θT
S)∥2γd ≥ ∥f∗ − f∗,<kℓ∥2νP −

C

δ
d−kℓ, (3.4.17)

with probability at least 1 − δ over S ∼ Unif(P([d], P)) and the noisy GD
randomness, provided

T

(
R

τ

)2

≤ δ2

C
dkℓ. (3.4.18)

Thus, to outperform the predictor that only fit monomials reachable with
leap < kℓ, that is

∥hS − f(·;θk
S)∥2γd ≤ ∥f∗ − f∗,<kℓ∥2νP − ε =

∑
U∈U<kℓ

(f∗)

α2
U − ε,

noisy GD must satisfy

T (R/τ)2 ≳ dkℓ.

Applying this lower bound to the three example functions (3.4.13):

• h
(1)
S : To achieve test error better than 1 requires T (R/τ)2 ≳ d5.

• h
(2)
S : To achieve test error better than 5 requires T (R/τ)2 ≳ d.

• h
(3)
S : To achieve test error better than 2 requires T (R/τ)2 ≳ d3.

3.4. EXAMPLES 81

More generally, consider the staircase function (with missing stairs):

hS(x) = xi1 + xi1xi2xi3 + xi1xi2 · · ·xi6 + xi1xi2 · · ·xi10.

Choosing the reference function g∗ to include progressively more ‘stairs’,
Corollary 3.4.7 implies the complexity threshold:

• To get test error < 4 requires T (R/τ)2 ≳ d;

• To get test error < 3 requires T (R/τ)2 ≳ d2;

• To get test error < 2 requires T (R/τ)2 ≳ d3;

• To get test error < 1 requires T (R/τ)2 ≳ d4.

Thus, this lower bound describes a ‘hierarchical’ sequential learning pro-
cess where as the dynamics progress, one can learn more and more complex
monomials. When training a standard neural network with online SGD, we
observe empirically that each leap of size-k corresponds to passing a saddle;
empirical and theoretical evidence shows Θ̃d(d

max(1,k−1)) steps are needed to
escape such saddles. This results in a saddle-to-saddle trajectory where most
of the dynamics is spent escaping the saddle with largest leap. See Figure
3.1 (from [AAM23]).

Matching upper bound. The sequential correlation-test algorithm learns
with complexity Θd(d

kℓ). This is an example of a Correlation Statistical
Query (CSQ) algorithm. In the next chapter, we show that the correlation
alignment complexity lower bounds the complexity of any CSQ algorithm.
Hence, the alignment complexity is sharp for CSQ.

What about noisy GD algorithms? Given a CSQ algorithm on binary
targets, Abbe et al. [AKM+21] shows how to construct a parametric models
f(·;θ) such that SGD on squared loss emulates this algorithm. Adapting their
argument, one can build a (nonstandard) model with p = Θ̃d(d

kℓ) parameters
on which SGD reproduces the sequential support-recovery algorithm, achiev-
ing T = Θ̃(dkℓ) with R = Θd(1) and τ = Θd(1); thus T (R/τ)

2 = Θ̃d(d
kℓ),

matching the lower bound.
However, this algorithm uses a highly nonstandard and irregular model,

where the sequential support-recovery process is hard-coded in the model
architecture. For more standard neural networks—the ones that are relevant
for practice—, matching the alignment complexity in full generality remains
conjectural. Current rigorous results include:

82 CHAPTER 3. NOISY GRADIENT DESCENT

Figure 3.1: Test error versus the number of online SGD steps on a two-layer
neural network when the link function is f∗(z) =

1
2(z1+z1z2 · · · z5+z1z2 · · · z9+

z1z2 · · · z14. The SGD dynamics follow a saddle-to-saddle dynamic, and se-
quentially picks up the support and monomials z1 in Θ̃d(d) steps, z1 . . . z5 in
Θ̃d(d

3) steps (leap of size 4), z1 . . . z9 in Θ̃d(d
3) steps (leap of size 4), and

z1 . . . z14 in Θ̃d(d
4) steps (leap of size 5). The figure is from [AAM23].

• kℓ = 1: two-layer neural networks learn with b·T = Θd(d) (with R =
√
d

and b = O(1) or b = Θd(d)) for almost every coefficients {αU}U∈U(f∗)
via layer-wise training [AAM22].

• kℓ ≥ 2: pure parity functions are learnable with T = Θ̃d(d
kℓ−1) with

R =
√
d and b = O(1) via layer-wise training [AAM23]. Certain other

staircase classes were shown to be learnable with same complexity us-
ing specialized updates (projected or sign GD) [AAM23, KCGK24].
Degree-2 parity admits T = Θ̃(d) [Tel22, Gla23].

Chapter 4

Statistical Query
algorithms

In this chapter, we introduce the statistical query (SQ) model, a framework
originally proposed by Kearns [Kea98] for designing algorithms that are ro-
bust to noise. In the SQ model, learning algorithms only access data through
approximate expectations, instead of individual samples directly. Specifically,
they are restricted to querying quantities of the form

E(y,x)∼D[ϕ(y,x)],

for some query function ϕ, and receive an approximate value up to some
specified tolerance. A wide variety of algorithms can be implemented in this
model, including many gradient-based methods.

The SQ model has become a popular framework in learning theory for
two main reasons:

• It enables the design of noise-tolerant algorithms: any algorithm that
can be implemented in the SQ model is guaranteed to be robust to
small perturbations or statistical noise in the training data.

• It provides a convenient and powerful tool for proving lower bounds in
a wide range of settings. These bounds hold for any algorithm relying
only on low-precision expectations of the data, under adversarial or
worst-case noise assumption.

The goal of this chapter is to provide a concise introduction to the SQ
model. We start with its formal definition and basic properties, then present
several techniques for proving lower bounds within this framework. For a
more complete survey, we refer the reader to [Rey20] and references therein.

83

84 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

4.1 Basic model and definitions

A helpful way to view the SQ model is as a restricted version of the standard
probably approximately correct (PAC) model introduced by Valiant [Val84].
In the PAC model, the learner receives n i.i.d. samples (yi,xi) ∈ Y×X drawn
from some unknown distribution P, and may use them arbitrarily to output
a predictor f̂ : X → Y .

In contrast, in the SQ model, the algorithm is not given direct access to
the samples. Instead, it can only access the distribution through approxi-
mate expectations of queries—functions ϕ : Y × X → [−1, 1]. Formally, the
interaction is mediated by an oracle: SQ algorithms issue a query to an oracle
which returns a value in some range.

Definition 4.1.1 (STAT(τ) oracle). Let D ∈ P(Y ×X) be the data distribu-
tion. Given a tolerance parameter τ > 0, the statistical query oracle STAT(τ)
takes as input a query function ϕ : Y × X → [−1, 1] and returns a value in
the range: [

ED[ϕ(y,x)]− τ,ED[ϕ(y,x)] + τ
]
. (4.1.1)

Importantly, any SQ algorithm can be simulated from i.i.d. samples using
empirical averages. By Hoeffding’s inequality, if ϕ is bounded in [−1, 1], then

Ên[ϕ(y,x)] =
1

n

n∑
i=1

ϕ(yi,xi) ∈
[
ED[ϕ(y,x)]− τ,ED[ϕ(y,x)] + τ

]
,

with probability at least 1− δ, provided that

n ≥ log(2/δ)

τ 2
.

Thus, any SQ algorithm that makes q query calls to STAT(τ) can be simulated
with probability at least 1− δ using

n = O

(
log(q/δ)

τ 2

)
samples, by union bound. This motivates interpreting the tolerance param-
eter as τ ≈ 1/

√
n.

Many variants of the SQ oracle STAT(τ) have been introduced in the lit-
erature, including honest SQ [Yan05], multi-sample SQ [BKW03], correlation
SQ [BF02], VSTAT [FGR+17], or differentiable learning SQ [JMS24], and we
will discuss some of them later in this chapter.

4.1. BASIC MODEL AND DEFINITIONS 85

Remark 4.1.2 (Importance of bounded queries). To ensure that the toler-
ance τ is meaningful, the scale of the query function ϕ must be controlled.
Without such a normalization, one could trivially reduce the error tolerance
by scaling up the query function, or simulate multiple queries at once. A
common assumption is that queries lie in the unit ball of L∞, i.e., ∥ϕ∥∞ ≤ 1.
More generally, the oracle and query normalization are chosen so that they
can be efficiently simulated from samples.

SQ algorithms. In summary, a SQ algorithm A with q query calls and
tolerance τ (based on oracle STAT(τ)) proceeds as follows. It takes a data
distribution D ∈ P(Y × X) and operates in q rounds:

• At each round t = 1, . . . , q, the algorithm A issues a query ϕt : Y×X →
[−1, 1] and receive a response vt from STAT(τ), that is

|vt − ED[ϕt(y,x)]| ≤ τ. (4.1.2)

The query ϕt is chosen adaptively, that is, it can depend on past re-
sponses v1, . . . , vt−1.

• After q round, the algorithm outputs an answer A(D) based on all the

responses v1, . . . , vq. For example, A(D) is a predictor f̂ : X → Y .

We saw that any such algorithm can be implemented using O(log(q)/τ 2)
samples. Thus, if a SQ algorithm can solve a problem with

• At most polynomially many queries;

• Each query has tolerance at most polynomially small;

• We can compute ϕt from v1, . . . , vt−1 and evaluate ϕt efficiently;

Then the problem can be solved in polynomial time using i.i.d. samples.

Robustness to label noise. A key feature of the SQ model is that it guar-
antees robustness to certain types of label noise. For example, consider the
binary classification setting Y = {−1, 1}, and suppose that labels are cor-
rupted independently with probability η ∈ [0, 1): with probability 1− η, y is
drawn from D, and with probability η, y is drawn uniformly at random. Let
Dη denote the corrupted distribution. Then for any query ϕ, we have

EDη
[ϕ(y,x)] = (1− η)ED[ϕ(y,x)] + ηED

[
1

2
(ϕ(1,x) + ϕ(−1,x))

]
.

86 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

Thus, we can simulate the query oracle from corrupted data with estimator

1

n(1− η)

n∑
i=1

ϕ(yi,xi)−
η

2
(ϕ(1,xi) + ϕ(−1,xi)),

with probability at least 1− δ and sample size

n = O

(
log(1/δ)

(1− η)2τ 2

)
.

Thus, the SQ framework gives us a way to design noise-tolerant algorithm,
which was the original motivation by Kearns [Kea98].

SQ lower bounds. One of the most appealing features of the SQ model
is that it provides a powerful framework for proving computational lower
bounds. In this model, lower bounds are established against a strong notion
of success: a SQ algorithm is said to succeed only if it performs well for every
sequence of valid oracle responses consistent with the allowed tolerance.

Example 4.1.3. Consider a class of distributions H ⊆ P(Y ×X) and a loss
function ℓ. The goal is to design an algorithm A that, for any distribution
D ∈ H, outputs a predictor A(D) : X → Y satisfying

E(y,x)∼D [ℓ(y,A(D)(x))] ≤ ε.

An SQ algorithm is said to succeed if it achieves this guarantee for every
D ∈ H, regardless of the specific (valid) oracle responses it receives. That is,
for any sequence of responses v1, . . . , vq satisfying

|vt − ED[ϕt(y,x)]| ≤ τ, for each query ϕt,

the algorithm must still output a predictor with test error at most ε.

In other words, lower bounds in the SQ model are established against
adversarial or worst-case noise in the expectations, rather than typical sta-
tistical noise. This is a priori a much more pessimistic noise model than sta-
tistical noise from i.i.d. samples. Nonetheless, it makes proving lower bounds
against large classes of algorithm easier to prove, and remarkably, it often
matches the actual computational and sample complexity of the best-known
algorithms under sampling noise.

4.1. BASIC MODEL AND DEFINITIONS 87

Remark 4.1.4 (Hardness of noise-tolerant algorithms). In general, SQ lower
bounds are believed to capture the computational complexity of noise-tolerant
algorithms. Several (non-SQ) algorithms are known to perform much better
than these lower bounds in noiseless settings (see Remark 4.2.8). That said,
SQ lower bounds should be interpreted with caution. While they accurately
capture the complexity of many noisy learning problems, there are cases where
they are off (see Remark 4.2.8). Understanding when SQ lower bounds can
accurately capture computational hardness is an active area of research.

Interpreting SQ lower bounds. Lower bounds in the SQ model typically
come in two flavors:

• Query complexity lower bound: These show that any SQ algorithm
that succeeds at solving a problem must satisfy q/τ 2 ≥ B, where B is a
problem-dependent quantity. Since τ ≍ 1/

√
n under empirical average

simulation (which requires Ω(n) operations to evaluate), this can be
interpreted as a lower bound on the runtime of the algorithm. Note
that this lower bound rules out a continuous trade-off between number
of queries q and tolerance τ .

• Tolerance upper bound: These typically show that if τ ≥ 1/
√
B,

then any SQ algorithm requires an exponential number of queries. Un-
der the correspondence τ = 1/

√
n, this implies that if n ≤ B, then no

efficient SQ algorithm can succeed. This is often interpreted as a lower
bound on the number of samples for polynomial-time (noise-tolerant)
algorithms to exist.

We will show examples for both flavors of lower bounds. Again, the
correspondence to runtime or sample size lower bounds should be interpreted
with caution—as indications of hardness and not definitive barriers.

A lower bound via second moment. As an illustration of the power of
the SQ framework, we present a simple SQ lower bound via a second moment
bound. More refined and stronger results will be presented in Section 4.3.

This lower bound will be on detection problems
[Should I call it decision problem? Many-to-one, composite ver-

sus simple, alternatives versus null.]
Consider the following detection or hypothesis testing problem: given a

class of target distributions H ⊆ P(Y × X) and a null distribution D0 ̸∈ H,

88 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

the goal is to decide whether the observed data is drawn from D0 or from
some D ∈ H:

H1 : D ∈ H, versus H0 : D = D0. (4.1.3)

This detection problem is easier than the corresponding learning problem—
any algorithm that learns the class H (to sufficient precision) can also solve
the detection task. Therefore, a lower bound on the detection problem readily
implies a lower bound on learning. This reduction from learning to testing is
a common strategy for proving lower bounds (see discussion in Chapter 5 on
low-degree polynomial algorithms).

In this setting, an SQ algorithm A takes a source distribution D and
outputs a binary decision A(D) ∈ {0, 1}. We say that A succeeds if, for all
D ∈ H ∪ {D0} and for any sequence of valid oracle responses, the algorithm
outputs:

A(D) =

{
1 if D ∈ H;
0 if D = D0.

(4.1.4)

To quantify the hardness of this problem, we define a SQ-alignment com-
plexity measure analogous to the alignment complexity used in Chapter 3 for
noisy gradient descent (Definition 3.2.1). For every D ∈ H, let LD := dD

dD0

denote the likelihood ratio, which we assume belongs to L2(D0) (see Re-
mark 4.1.8).

Definition 4.1.5 (SQ-alignment complexity). Let H ⊆ P(Y ×X) be a class
of distributions, D0 ∈ P(Y × X) a null distribution, and µH a prior over
P ∈ H. The SQ-alignment complexity of (µH,D0) is defined as

AlignSQ(µH,D0) :=

[
sup
∥ϕ∥D0

≤1
ED∼µH

[
⟨LD − 1, ϕ⟩2D0

]]−1
, (4.1.5)

where LD := dD
dD0

is the likelihood ratio of D with respect to D0.

Theorem 4.1.6 (SQ detection lower bound). Let H ⊆ P(Y × X) be a class
of target distributions and D0 ∈ P(Y ×X) a null distribution. Suppose there
exists a SQ algorithm that solves the detection problem (4.1.3) with q queries
and tolerance τ . Then for any prior µH ∈ P(H), we must have

q/τ 2 ≥ AlignSQ(µH,D0). (4.1.6)

4.1. BASIC MODEL AND DEFINITIONS 89

Proof. Fix a prior µH over H. The proof follows a standard SQ lower bound
strategy. By definition, the algorithm must succeed for every source distri-
butions D ∈ H ∪ D0 and every sequence of responses compatible with the
tolerance τ . Thus it is sufficient to display a deterministic sequence of queries
ϕ1, . . . , ϕq and responses v1, . . . vq that are compatible between D and D0 with
positive probability over D ∼ µH.

Let ϕ1, . . . , ϕq be the sequence of queries made by the algorithm A when
it receives responses vt = ED0

[ϕt(y,x)]. This sequence of queries is fixed,
independent of D ∼ µH, and consistent with source distribution D0. Let
us show that unless the bound (4.1.6) holds, then this query sequence is
compatible with source D ∈ H with positive probability over D ∼ µH. We
have

PD∼µH (∃t ∈ [q], |ED[ϕt(y,x)]− ED0
[ϕt(y,x)]| > τ)

(a)

≤ q sup
ϕ:Y×X→[−1,1]

PD∼µH (|ED[ϕ(y,x)]− ED0
[ϕ(y,x)]| > τ)

(b)

≤ q sup
∥ϕ∥D0

≤1

ED∼µH

[
|ED[ϕ(y,x)]− ED0

[ϕ(y,x)]|2
]

τ 2

(c)
=

q

τ 2
sup
∥ϕ∥D0

≤1
ED∼µH

[
ED0

[(
dD
dD0

(y,x)− 1

)
ϕ(y,x)

]2]
(d)
=

q

τ 2
1

AlignSQ(µH,D0)
,

(4.1.7)

where we used (a) a union bound over t ∈ [q] and that ϕt ∈ {ϕ : Y × X →
R : ∥ϕ∥∞ ≤ 1}, (b) that {ϕ : Y × X → R : ∥ϕ∥∞ ≤ 1} ⊆ {ϕ : Y × X → R :
∥ϕ∥L2(D0) ≤ 1} and Markov’s inequality, (c) the change of measure

ED [ϕ(y,x)] = ED0

[
dD
dD0

(y,x)ϕ(y,x)

]
.

and (d) the definition of the SQ-alignment complexity (4.1.5).
Hence, if q/τ 2 < AlignSQ(µH,D0), then with positive probability over D ∼

µH, the responses v1, . . . , vq are compatible with both D and D0. This implies
that the algorithm cannot distinguish between the null and the alternative
on at least one distribution in H, contradicting the assumed correctness of
the SQ algorithm. Therefore, we must have

q

τ 2
≥ AlignSQ(µH,D0),

90 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

which concludes the proof.

The SQ-alignment complexity and the lower bound in Theorem 4.1.6
closely parallel the correlation alignment complexity and lower bound estab-
lished in Theorem 3.2.2 for noisy gradient descent (GD). There, we showed
that learning fails unless

k

(
R

τ

)2

≫ AlignCor(µH,D0),

where k denotes the number of gradient steps, R is the clipping threshold on
the gradients, and τ 2 is the variance of the injected Gaussian noise. Notably,
the quantity τ/R in the noisy GD model plays the same role as the tolerance
parameter τ in the SQ model where we ‘clipped’ the queries to R = 1.

In fact, we will show in the next section that the exact same lower bound

q

τ 2
≥ AlignCor(µH,D0),

with SQ-alignment replaced by the correlation alignment complexity, holds
for the restricted class of SQ algorithms known as the correlational statistical
query (CSQ) model (see Theorem 4.2.3).

It is worth emphasizing how much simpler the proof of Theorem 4.1.6
is under the SQ model—with adversarial noise—, compared to noisy GD
with additive Gaussian noise. The worst-case assumption makes the analysis
significantly cleaner since one can use any deterministic sequence of pertur-
bations, instead of having to track the accumulation of Gaussian noise, as in
the junk flow argument. In Section 4.4, we will revisit this connection and
show how the junk flow proof can be adapted to rederive the SQ lower bound
(4.1.6) under Gaussian additive noise, thereby connecting the two noise mod-
els for the alignment complexity lower bound.

Remark 4.1.7 (Randomized statistical dimension). From [Fel17] [Second
moment bound easy to compute. Could directly use first moment
and ϕ : Y×X → [−1, 1]] [Tight characterization of detection, briefly
describe]

Remark 4.1.8 (Squared-integrable likelihood ratios). In our definition of the
SQ-alignment complicity, we implicitly assume that each D ∈ H is absolutely
continuous with respect to D0, and that the Radon–Nikodym derivative LD =
dD
dD0

belongs to L2(D0). This square-integrability condition is an important,

4.2. CORRELATION STATISTICAL QUERIES 91

but often implicit assumption in the literature. Intuitively, it ensures that the
target distributions D ∈ H have ‘enough noise’ with respect to the null D0.

This ‘noise’ assumption is necessary to derive meaningful SQ lower bounds
in regression settings: SQ algorithm are allowed to issue arbitrary bounded
measurable queries (which might not be efficiently computable) and without
such assumptions, arbitrarily complex query functions could be used to learn
otherwise hard problems. For example, Vempala and Wilmes [VW19] showed
that any finite class H of noiseless functions can be learned using just log |H|
queries of constant tolerance (better than the bound (4.1.6)), using non-
robust, complex queries. See also related discussions in [Val12, SVWX17,
JMS24].

4.2 Correlation Statistical Queries

The lower bound in Theorem 4.1.6 provided a simple illustration of the
SQ framework, but more involved arguments are needed to obtain sharper
bounds—particularly, upper bounds on the tolerance parameter τ .

Before turning to those in Section 4.3, we examine a simpler and natural
subclass of SQ algorithms known as the correlation statistical query (CSQ)
model, introduced by Bshouty and Feldman [BF02]. The CSQ model is a
restricted version of the SQ model in which queries are limited to correlations
between the label and a function of the input. This restriction makes the
model easier to analyze, while still capturing the behavior of many important
algorithms. In particular, the CSQ model often yields lower bounds that are
easier to apply and interpret.

Definition of the CSQ model. In the CSQ model, queries are restricted
to functions of the form ϕ(y,x) = y · ϕ(x), for some ϕ : X → [−1, 1]. In
particular, this implies that the algorithm only interacts with the regression
function h(x) := E[y|x], since E[yϕ(x)] = E[h(x)ϕ(x)].

Definition 4.2.1 (CSQ(τ) oracle). Let D ∈ P(Y × X) be the data distribu-
tion. Given a tolerance parameter τ > 0, the correlation statistical query
oracle CSQ(τ) takes as input a query function ϕ : X → [−1, 1] and returns a
value in the range: [

ED[yϕ(x)]− τ,ED[yϕ(x)] + τ
]
. (4.2.1)

92 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

[In order to be implementable by SQ we need bound ∥y∥∞. More
generally, we need a tail bound to ensure that we can implement
from samples efficiently.]

Several important algorithms naturally operate within the CSQ model.
Consider, for instance, gradient descent on the squared loss:

R̂n(θ) =
1

n

n∑
i=1

(yi − f(xi;θ))
2,

with model parameters θ ∈ Rp. At each step, GD performs the update

θk+1 = θk −∇θR̂n(θ
k)

= θk +
2

n

n∑
i=1

yi∇θf(xi;θ
k)︸ ︷︷ ︸

depends on labels (CSQ)

− 2

n

n∑
i=1

f(xi;θ
k)∇θf(xi;θ

k)︸ ︷︷ ︸
does not depend on the labels

. (4.2.2)

The first term is a vector of p CSQ queries (one per parameter), and the
second term depends only on the input distribution. Therefore, gradient
descent on squared loss with T steps can be implemented using pT CSQ
queries, each with tolerance τ ≈ 1/

√
n. If the loss is not a squared loss

(or logistic loss), the queries are not CSQ anymore, but still fall within the
general SQ model.

Remark 4.2.2 (Data reuse). If the same data is reused at each step, gradient
descent can implement ‘sample extraction’ [AKM+21] and vastly outperform
SQ lower bounds in noiseless settings. However this requires a very non-
standard model f(·;θ). In the online setting (no data reuse), we expect CSQ
to correctly capture the performance of gradient algorithms in many settings.

SQ versus CSQ. In general, the CSQ model is strictly weaker than the SQ
model. However, under certain conditions, the two models are equivalent.
Specifically, if the labels are binary values |Y| = 2 (binary classification) and
the input distribution Px is fixed, then any SQ query can be simulated by
a CSQ query. To see this, let Y = {a, b}. Then any function ϕ(y,x) can be

4.2. CORRELATION STATISTICAL QUERIES 93

decomposed as

ϕ(y,x) = ϕ(a,x)
y − b
a− b

+ ϕ(b,x)
a− y
a− b

=
1

a− b
y [ϕ(a,x)− ϕ(b,x)]︸ ︷︷ ︸

CSQ query

+
1

a− b
[aϕ(b,x)− bϕ(a,x)]︸ ︷︷ ︸

does not depend on the labels

. (4.2.3)

Thus, any SQ query can be expressed as the sum of a CSQ query and a term
that depends only on the input distribution. Therefore, any SQ algorithm
can be simulated by a CSQ algorithm in this setting. To show SQ lower
bounds, it is sufficient to show a lower bound on CSQ algorithms.

However, this equivalence breaks down in more general settings:

• When |Y| > 2, SQ algorithms are strictly more powerful than CSQ
algorithms. We illustrate this gap when learning single-index models
and sparse functions, where super-polynomial separations can appear.

• Even with binary labels, if the input distribution Px is not fixed (i.e.,
in the distribution-free setting), SQ can outperform CSQ. For instance,
Feldman [Fel11] shows that linear threshold functions are SQ-learnable
but not CSQ-learnable in the distribution-free model.

Alignment complexity. First, let us return to the detection problem (4.1.3)
and derive a lower bound for the restricted class of CSQ algorithms. As-
sume a fixed input distribution PX ∈ P(X), and suppose that both the
null distribution D0 and all target distributions D ∈ H share this marginal
on X . In this setting, we can identify each distribution with its corre-
sponding regression function: h(x) := ED[y|x] ∈ L2(PX) for D ∈ H, and
g(x) := ED0

[y|x] ∈ L2(PX).
We recall the correlation alignment complexity from Definition 3.2.1: for

a prior µH ∈ P(H) over regression functions,

AlignCor(µH, g) =

[
sup
∥ϕ∥PX≤1

Eh∼µH

[
⟨h− g, ϕ⟩2PX

]]−1
We now state the CSQ analogue of Theorem 4.1.6.

Theorem 4.2.3 (CSQ detection lower bound). Fix an input distribution
PX ∈ P(X). Let H ⊆ L2(PX) be a class of regression functions, and g ∈

94 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

L2(X) the regression function of the null distribution. Suppose there exists a
CSQ algorithm that solves the detection problem (4.1.3) with q queries and
tolerance τ . Then for any prior µH ∈ PH, we must have

q

τ 2
≥ AlignCor(µH, g). (4.2.4)

Proof. This result follows from the same argument as in Theorem 4.1.6, with
only difference the upper bound in (4.1.7):

PD∼µH (∃t ∈ [q], |ED[yϕt(x)]− ED0
[yϕt(x)]| > τ)

≤ q

τ 2
sup
∥ϕ∥PX≤1

ED∼µH

[
|ED[yϕ(x)]− ED0

[yϕ(x)]|2
]

=
q

τ 2
sup
∥ϕ∥PX≤1

Eh∼µH

[
EPX [(h(x)− g(x))ϕ(x)]2

]
=

q

τ 2
1

AlignCor(µH, g)
.

The rest of the proof is exactly the same.

Statistical Query dimension. We now present a classical method for prov-
ing CSQ lower bounds, via the statistical query dimension of the target func-
tion class. This dimension is usually defined for binary classification, but we
present a natural extension to regression settings.

Definition 4.2.4 (Statistical Query dimension). Let PX ∈ P(X) be an input
distribution and let H be a class of functions h : X → R with ∥h∥PX ≤ 1.
The statistical query dimension (SQ dimension) of H is the largest integer
N such that there exist N functions {h1, . . . , hN} ⊆ H satisfying:

∥hj∥PX = 1, and |⟨hi, hj⟩PX | ≤
1

N
, for all i ̸= j. (4.2.5)

Intuitively, if a function class contains many nearly orthogonal functions,
then any algorithm accessing only noisy correlation queries must spend sig-
nificant effort to distinguish between them. Specifically, the next theorem
implies that if H has SQ dimension N , then any CSQ algorithm will need at
least q/τ 2 = Ω(N) query complexity to distinguish them.

In fact, this could already be derived from the correlation alignment com-
plexity: for µH uniform over the set of N functions (4.2.5), one can show that

4.2. CORRELATION STATISTICAL QUERIES 95

AlignCor(µH,PX) = Ω(N) (thus, CSQ requires Ω(N) queries to distinguish all
h ∈ H from the null regression function). However, the following result will
give a stronger, quantitative lower bound for CSQ algorithms:

Theorem 4.2.5 ([Szö09, Theorem 5]). Let PX ∈ P(X) be an input distri-
bution, and let H be a class of functions containing N functions h1, . . . , hN
satisfying:

∥hj∥PX = 1, and |⟨hi, hj⟩PX | ≤ ε, ∀i ̸= j ∈ [N]. (4.2.6)

Suppose a CSQ algorithm A makes q queries of tolerance τ , such that, for
any target function h ∈ H, it outputs a predictor A(h) : X → R. If

q ≤ N
τ 2 − ε

2
, and N ≥ 2

ε
, (4.2.7)

then we must have
sup
h∈H
∥A(h)− h∥2PX

≥ 1− 2ε. (4.2.8)

Proof. Let us first outline the proof strategy. The core idea is to show that if
q is too small, CSQ algorithms with at most q query calls cannot distinguish
between all N functions hj. Let us sketch the main steps:

Step 1: Each query with tolerance τ allows to rule out the functions hj whose
correlation is not τ -close to the response. We show that each query
eliminates at most 1/(τ 2 − ε) functions, so that after q ≤ N(τ 2 − ε)/2
queries, we ruled out at most N/2 functions. Thus, there exists a subset
H̃ = {h̃1, . . . , h̃k} of k ≥ N/2 functions that are compatible with all q
responses of the CSQ algorithm.

Step 2: For these k indistinguishable functions, the algorithm must output
the same predictor h∗ := A(h̃i), for all h̃i ∈ H̃. We show that this
implies that

sup
h∈H
∥A(h)− h∥2PX

≥ max
i∈[k]
∥h∗ − h̃i∥2PX

≥ 1− 2ε.

Step 1: Let us bound how many hypotheses are eliminated by each query.
The noise is adversarial and it is not enough to consider a deterministic
sequence of answers. Let’s simply fix v1 = v2 . . . = vq = 0 and the associated
deterministic sequence of queries ϕ1, . . . , ϕq.

96 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

For each t ∈ [q], define

St := {i ∈ [N] : |EPX [hi(x)ϕt(x)]| > τ} ,

so that St ⊆ [N] are the indices of all the hj’s that we are able to rule out at
step t. Denote Nt := |St| and st,j = sign(⟨hj, ϕt⟩PX). By definition of St,

Ntτ ≤
∑
j∈St

sj,t⟨hj, ϕt⟩PX

≤ ∥ϕt∥PX

∥∥∥∥∥∥
∑
j∈St

sj,thj

∥∥∥∥∥∥
PX

≤
√∑

j∈St

∥hj∥2PX
+
∑

i̸=j∈St

si,tsj,t⟨hj, hi⟩PX ,

where we used Cauchy-Schwarz inequality and ∥ϕt∥PX ≤ ∥ϕt∥∞ ≤ 1. Squar-
ing both sides of the inequality and assumption (4.2.6), we deduce that

(Ntτ)
2 ≤ Nt + (Nt)

2ε =⇒ Nt ≤
1

τ 2 − ε
.

Hence, the total number of eliminated functions after q queries is at most:

q∑
t=1

Nt ≤
q

τ 2 − ε
.

If q ≤ N(τ 2 − ε)/2, this is at most N/2, so at least N/2 functions remain
compatible with all q responses.
Step 2: Let h̃1, . . . , h̃k be the indistinguishable functions, with k ≥ N/2.
Since A(h̃1) = . . . = A(h̃k) = h∗, we have

sup
h∈H
∥A(h)− h∥2PX

≥ max
i∈[k]
∥h∗ − h̃i∥2PX

≥ min
h∈L2(PX)

max
i∈[k]
∥h− h̃i∥2PX

≥ min
h∈L2(PX)

1

k

k∑
i=1

∥h− h̃i∥2PX
.

4.2. CORRELATION STATISTICAL QUERIES 97

This last equation is minimized at 1
k

∑k
j=1 h̃j. Expanding the square and

rearranging the terms, we obtain

1

k

k∑
i=1

∥∥∥∥∥h̃i − 1

k

k∑
j=1

h̃j

∥∥∥∥∥
2

PX

=
1

k

k∑
i=1

∥h̃i∥2PX
− 1

k2

k∑
i,j=1

⟨h̃i, h̃j⟩PX

= 1− 1

k
− 1

k2

∑
i ̸=j

⟨h̃i, h̃j⟩PX

(a)

≥ 1− 1

k
− ε

(b)

≥ 1− 2

N
− ε

(c)

≥ 1− 2ε,

where we used (a) |⟨h̃i, h̃j⟩PX | ≤ ε by assumption, (b) k ≥ N/2, and (c)
N ≥ 2/ε by assumption. This concludes the proof of this theorem.

This theorem implies that if the SQ dimension of H is at least N , then
any CSQ algorithm requires at least

q ≥ Nτ 2

2
− 1

queries to achieve squared test error below 1−4/N . However, Theorem 4.2.5
allows to derive more general lower bound by fixing ε and N independently.
For example, suppose there exist exponentially many functions in H satisfy-
ing (4.2.6) with ε = 1/B. This implies that H is not CSQ-learnable unless
τ 2 = O(1/B) (that is n = Ω(B)). We will see an example of such a lower
bound when considering single-index models in Section 4.5.

Weak versus strong learning. Theorem 4.2.5 characterizes the complexity
of weak learning in the CSQ model—that is, achieving performance strictly
better than a trivial predictor (e.g., the algorithm that always output the 0
function, which achieves squared test error equal to 1).

This result is essentially tight for weak learning of binary functions. Let
H be a class of functions h : X → {±1} and consider a maximal subfamily
of functions H̃ = {h1, . . . , hN} satisfying |⟨hi, hj⟩PX | ≤ ε for all i ̸= j. Thus

for any function h ∈ H, there exists hj ∈ H̃ such that |⟨hi, hj⟩PX | > ε. Fix

98 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

τ = ε/3, compute the correlation with the N functions in H̃ and select the
function with response |v| ≥ ε/3. By construction, it is guaranteed to have
absolute correlation at least ε/3.

However, weak learning does not imply strong learning—achieving arbi-
trarily small test error—in the distribution-specific case. Various alternative
of ‘strong’ SQ dimension have been introduced to capture strong learnability.
We refer the reader to [Szö09, Fel12] for discussions.

Remark 4.2.6 (SQ dimension versus Dimension LB, weak learning). [TBD]
Weak learning between CSQ and kernel methods. If SQ dimension N , needs
q/τ 2 = Ω(N) to learn with edge 1/N . taking these N functions, we get
dimension lower bound Ω(N). LB on query complexity versus number of
samples. But one is adaptive, and strong learning very different.

Example of parity functions. We illustrate the SQ dimension with a
canonical example: learning parity functions. Let X = {±1}d with uni-
form distribution PX = νd = Unif({±1}d) and consider the class of all parity
functions:

H =

{
χS(x) =

∏
i∈S

xi : S ⊆ [d]

}
. (4.2.9)

Since H consists of binary-valued functions, learning H with CSQ or SQ are
equivalent in this setting.

The class H contains 2d orthogonal functions with unit norm (see Defini-
tion 2.4.16). Thus, its SQ dimension is exactly 2d. Applying Theorem 4.2.5
immediately yields the following classical result:

Theorem 4.2.7 (SQ-hardness of learning parities [BFJ+94, Kea98]). Any SQ
algorithm that learns parity functions under the uniform distribution over the
hypercube must make at least 2Ω(d) query calls or have tolerance τ = 2−Ω(d).

More precisely, Theorem 4.2.5 implies that no SQ algorithm can achieve
nontrivial prediction error unless q/τ 2 = Ω(2d). We can also consider the
class of k-sparse parity functions, defined as:

Hk := {χS : S ⊆ [d], |S| = k}, with SQ dimension |Hk| =
(
d

k

)
.

This yield a lower bound q/τ 2 = Ω(dk) (for k fixed).

4.2. CORRELATION STATISTICAL QUERIES 99

Remark 4.2.8 (Hardness of learning parities). Does this SQ lower bound
reflect the true complexity of learning parity functions?

• (Efficient learning without noise.) Parities without noise can be learned
efficiently using non-SQ algorithms. Indeed, each χS corresponds to
a linear function over Z2: writing ỹ = (y + 1)/2 ∈ {0, 1} and z =
(x+ 1)/2 ∈ {0, 1}d,

ỹ =
χS(x) + 1

2
= zTc mod 2, c = (1[i ∈ S])i∈[d].

Thus, given n labeled examples, one can solve the linear system ỹ = Zc
over Z2, where Z ∈ {±1}n×d and ỹ ∈ {0, 1}n are the n samples trans-
formed as above. As soon as n = Ω(d), with high probability this system
is invertible and Gaussian elimination recovers c efficiently. However,
this method is not robust and fails as soon as there is some noise in the
labels: it is not noise-tolerant and does not fall within the SQ model.

• (Noisy settings.) Does SQ correctly captures the complexity of noise-
tolerant algorithms? Not quite. Blum, Kalai, and Wasserman [BKW03]
showed that noisy parities are learnable in time 2Θ(d/ log d), which is much
better than the 2Ω(d) bound in Theorem 4.2.7. However, in many noisy
settings, SQ correctly captures learning hardness.

As an application of Theorem 4.2.7, let us show SQ hardness of learning
two-layer neural network under the uniform distribution over the hypercube.
We first show that parity functions can be represented exactly by two-layer
neural networks with ReLu activations.

Lemma 4.2.9. Any parity function χS(x) with |S| = k can be represented
by a two-layer neural network with ReLu activation and k neurons.

Proof. Let X =
∑

i∈S xi. Observe that we can write

χS(x) =
∏
i∈S

xi = gk(X), ,

where gk is the sawtooth function depicted in Figure 4.1 with gk(k − 2i) =
(−1)i for i = 0, . . . , k. One can verify that

gk(X) = (−1)k + (−1)k+1(X + k)+ + 2
k−1∑
i=1

(−1)k−i+1(X + k − 2i)+, (4.2.10)

100 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

X
k

k − 2

k − 4

. . .

-1

1 gk(X)

Figure 4.1: Sawtooth function gk(X).

which expresses gk(X) as a linear combination of k ReLu activations. Finally,
note that we can write X = ⟨1S,x⟩ where 1 = (1[i ∈ S])i∈[d]. Thus substitut-
ing X = ⟨1S,x⟩ in Equation (4.2.10) yields the desired representation.

Define H2NN,k to be the class of two-layer neural networks with ReLu
activation and k neurons. The previous lemma implies that Hk ⊆ H2NN,k, so

the SQ dimension of H2NN,k is at least
(
d
k

)
.

Corollary 4.2.10. The class H2NN,k is not SQ-learnable under the uniform
distribution over the hypercube whenever k = ωd(1).

Note that this lower bound holds even for improper learning. Compare
this with the hardness result of Klivans and Sherstov (Theorem 1.5.4, Chap-
ter 1), which shows that intersections of halfspaces—and hence two-layer
ReLU networks (with ReLu output) and k = dε neurons (it can be improved
to k = ωd(1) [DLSS14])—cannot be learned in polynomial time under the
assumption that SVP is hard. That result rules out any polynomial-time
algorithm (not just SQ) but holds in the worst case over the input distribu-
tion. In contrast, our SQ lower bound applies to algorithms that work under
a fixed input distribution (uniform over the hypercube), but only rules out
statistical query algorithms.

4.3 Lower bounds via Statistical Dimension

In the previous section, we saw that we can study the SQ complexity of binary
classification by restricting ourselves to CSQ algorithms. In that setting,
proving lower bounds (for weak learning) reduces to identifying a set of nearly
orthogonal functions. This idea led to the notion of SQ dimension.

However, in more complex settings such as real-valued labels, the CSQ
model is much less powerful than the SQ model, and the SQ dimension fails to

4.3. LOWER BOUNDS VIA STATISTICAL DIMENSION 101

capture SQ complexity. In this section, we will show that a closely related idea
extends to the general SQ framework: proving lower bounds reduces again
to identifying a set of distributions—but now with likelihood ratios that are
nearly orthogonal. This leads to a generalization of the SQ dimension known
as the statistical dimension with average correlation (SDA), introduced by
Feldman et al. [FGR+17].

We follow the framework developed in [FGR+17], which provides a uni-
fied approach to proving SQ lower bounds across a wide range of problems.
In particular, it introduces the notion of search problems over distributions,
which includes most standard learning tasks, such as regression, hypothesis
testing, and strong learning. Our goal in this section is to convey the main
ideas behind this framework rather than to state the most general or tightest
results. For further refinements, generalizations, or applications, we refer the
reader to [FGR+17, FPV15, Fel17].

Distributional search problems. We start by formally defining the class
of problems we will consider in this section:

Definition 4.3.1 (Search problems over distributions). Fix a domain Z
(measurable space). A search problem over distributions is defined by

(i) A set of distributions H ⊆ P(Z);

(ii) A set of solutions F ;

(iii) A mapping φ : H → 2F .

For D ∈ H, φ(D) ⊆ F is the (non-empty) set of valid solutions given D.
The distributional search problem (H,F , φ) corresponds to finding a valid
solution f ∈ φ(D) given access (to an oracle or samples from) an unknown
D ∈ H. We will use Hf := {D ∈ H : f ∈ φ(D)} to denote the set of
distributions D for which f is a valid solution.

Supervised learning is a special case of this search problem: let Z = Y×X
be our domain and consider F ⊆ YX a class of models f : X → Y . Given a
loss ℓ and an accuracy ε > 0, we define the set of valid solutions to be

φ(D) := {f ∈ F : ED[ℓ(y, f(x))] ≤ ε} .

In other words, the goal of the distributional search problem here is to find a
model f ∈ F with test error at most ε given data from an unknown D ∈ H.

102 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

Example 4.3.2 (Detection problem). Consider the detection problem (4.1.3)
with H = H1 ∪ {D0}, where D0 is the null and H1 is the set of alternative
distributions. In this case we can set F = {0, 1} and φ : H → 2F as

φ(D) =

{
{1} if D ∈ H1,

{0} if D = D0.

The search problem in Definition 4.3.1 includes many other popular classes
of problems, such as random constraint satisfaction or stochastic optimiza-
tion. See [FGR+17, Fel17] for further examples and applications.

Statistical dimension for detection. We will characterize the SQ com-
plexity of solving (H,F , φ) as the hardest detection problem implicit in the
search problem. The idea is that if an algorithm can solve the search prob-
lem, then for any subset H1 ⊆ H and null D0 ∈ P(Z) (sufficiently different
from H1), the algorithm can distinguish between H1 and D0.

This is a common approach for proving lower bounds in general, and
[Fel17] argues that it is essentially tight: the hardest detection problem is
(roughly) as hard as the search problem. Therefore, we start by proving a
lower bound on general detection problems. The lower bound on the search
problem will be obtained by taking the worst of these lower bounds over all
possible detection problems implicit in that search problem.

Below, we define the statistical dimension with average correlation (SDA)
which will capture the difficulty of the detection problem. The difficulty of
distinguishing an alternative D1 from a null D0 is controlled by

ED1
[ϕ]− ED0

[ϕ] = ED0

[
dD1

dD0
ϕ

]
− ED0

[ϕ] =

〈
dD1

dD0
− 1, ϕ

〉
D0

.

This naturally leads to the definition of relative pairwise correlations.

Definition 4.3.3 (Average relative correlations). Given two distributions
D1,D2 ∈ P(Z) and a reference distribution D0 ∈ P(Z), their relative pair-
wise correlation is defined by

χD0
(D1,D2) :=

∣∣∣∣∣
〈
dD1

dD0
− 1,

dD2

dD0
− 1

〉
D0

∣∣∣∣∣ =
∣∣∣∣∣
〈
dD1

dD0
,
dD2

dD0

〉
D0

− 1

∣∣∣∣∣ . (4.3.1)

The average correlation ρ(H,D0) of a class H relative to D0 is defined as

ρ(H,D0) :=
1

|H|2
∑

D1,D2∈H

χD0
(D1,D2). (4.3.2)

4.3. LOWER BOUNDS VIA STATISTICAL DIMENSION 103

In particular, if we can find a set ofN distributions such that χD0
(Di,Di) ≤

C and χD0
(Di,Dj) ≤ 1/N for all i ̸= j, then ρ(H,D0) = O(1/N) (see later

Definition 4.3.11 of pairwise (γ, β)-correlation).

Definition 4.3.4 (Statistical dimension, detection). For domain Z, a finite
set of distributions H ⊆ P(Z), and a reference distribution D0 ∈ P(Z), the
statistical dimension of H relative to D with average correlation γ̄ is defined
to be the largest value d such that for any subset H̃ ⊆ H with |H̃| ≥ |H|/d,
we have ρ(H̃,D0) ≤ γ̄. We denote it by SDA(H,D0, γ̄).

Proposition 4.3.5 (SDA lower bound, detection). Let H = H1 ∪ {D0} ⊆
P(Z) be a detection problem with null D0 and a finite set of alternatives H1.
For γ̄ > 0, if an SQ algorithm solves this problem with q queries and tolerance√
γ̄, then we must have

q ≥ SDA(H1,D0, γ̄). (4.3.3)

Proof. This result follows from the same argument as in the proof with SQ
dimension (Theorem 4.2.5). Denote d = SDA(H1,D0, γ̄).

Let’s consider the sequence of queries ϕ1, . . . , ϕq associated to the re-
sponses vt = ED0

[ϕt] (exact responses of the oracle under D0), and upper
bound how many hypotheses in H1 are eliminated after q queries. For each
t ∈ [q], we define again

St :=
{
D ∈ H1 : |ED[ϕt]− ED0

[ϕt]| >
√
γ̄
}
,

that is, the subset of H1 that we are able to rule out with query ϕt. Denote
LD := dD

dD0
and let st,D = sign(⟨LD − 1, ϕt⟩). By definition of St,

|St|
√
γ̄ <

∑
D∈St

st,D⟨LD − 1, ϕt⟩D0

≤
√ ∑
D1,D2∈St

st,D1
st,D2
⟨LD1

− 1, LD2
− 1⟩D0

≤ |St|
√
ρ(St,D0).

Therefore γ̄ < ρ(St,D0) and we must have |St| ≤ |H1|/d: indeed, if |St| >
|H1|/d, then by definition of SDA, we would have ρ(St,D0) ≤ γ̄.

Thus, any SQ algorithm rules out at most q|H1|/d distributions using q
queries. If the SQ algorithm distinguishes between all D ∈ H1 and D0, then
we must have q|H1|/d ≥ |H1|, that is, q ≥ d, which concludes the proof.

104 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

Statistical dimension for search. We are now ready to present the general
lower bound for any search problem. We define the statistical dimension of
the search problem by reducing it to the worst statistical dimension over
detection problems.

Definition 4.3.6 (Statistical dimension, search). For domain Z and search
problem (H,F , φ), the statistical dimension of (H,F , φ) with average corre-
lation γ̄ is defined to be the largest value d such that there exist a reference
distribution D0 ∈ P(Z) and a finite set of distributions H̃ ⊆ H with the fol-
lowing property: for any solution f ∈ F , the set H̃f = H̃ \ Hf is non-empty

and SDA(H̃f ,D0, γ̄) ≥ d. We denote it by SDA(H, γ̄).

Intuitively, SDA for search problems is the worst SDA over ‘well-posed’
detection problems H̃ ⊆ H versus D0 ∈ P(Z). Specifically, if an SQ algo-
rithm output solution f ∈ F on the null D0, then f is not a valid solution for
any of the alternatives f ̸∈

⋃
D∈H φ(D). Thus an SQ algorithm that solves

the search problem must distinguish between D0 and H̃.

Theorem 4.3.7 (SDA lower bound, search). Let (H,F , φ) be a search prob-
lem with H ⊆ P(Z). For γ̄ > 0, if an SQ algorithm solves this problem with
q queries and tolerance

√
γ̄, then we must have

q ≥ SDA(H, γ̄). (4.3.4)

Proof. Let D0 ∈ P(Z) and H̃ ⊆ H be a set of distributions that achieve
d = SDA(H, γ̄) in the Definition 4.3.6. Let A be a SQ algorithm that uses q
queries of tolerance

√
γ̄ to solve (H,F , φ). Consider the sequence of queries

ϕ1, . . . , ϕq associated to the responses vt = ED0
[ϕt], and let f ∈ F be the

output of A after seeing these q responses. Let H̃f := H̃ \ Hf , so that f

is not a solution to any of the alternative distributions H̃f . Thus A must
solve the detection problem H̃f versus D0. By definition of SDA, we have
SDA(H̃f ,D0, γ̄) ≥ d. Thus, applying Proposition 4.3.5, we must have q ≥ d,
which concludes the proof.

The above definition of SDA looks abstract and intimidating. We will
show at the end of this section a simpler notion, based on pairwise correla-
tions, which is easier to apply and will be sufficient in many settings.

4.3. LOWER BOUNDS VIA STATISTICAL DIMENSION 105

VSTAT oracle. By Hoeffding’s inequality, we saw that the STAT(τ) oracle
can be computed using an empirical average over O(1/τ 2) samples. However,
if ϕ is very biased, e.g., ϕ(y,x) = 0 with high probability, O(1/τ 2) is too
pessimistic and we can implement the oracle with far fewer queries.

To make the correspondence between the number of samples n and the
tolerance τ more precise, Feldman et al [FGR+17] proposed a strengthening
of the STAT oracle which incorporates the variance of the query:

Definition 4.3.8 (VSTAT(t) oracle). Let D ∈ P(Y × X) be the data distri-
bution. Given a parameter t > 0, the oracle VSTAT(t) takes as input a query
ϕ : Y × X → [0, 1] and returns a value in the range [p− τ, p+ τ] where

p = ED[ϕ], and τ = max

{
1

t
,

√
p(1− p)

t

}
. (4.3.5)

First, note that the value returned by VSTAT(t) is always within 1/
√
t

from the expectation and the range is always at least 1/t. Thus VSTAT(t)
is no weaker than STAT(1/

√
t) and no stronger than STAT(1/t). Second,

p(1− p)/t corresponds to the variance of the empirical mean with t samples
when ϕ(y,x) ∈ {0, 1} is boolean. More generally, for any ϕ : Y ×X → [0, 1],
the variance of the empirical average is upper bounded by

Var

(
1

n

n∑
i=1

ϕ(yi,xi)

)
=

ED[ϕ2]− ED[ϕ]2

n
≤ ED[ϕ]− ED[ϕ]2

n
=
p(1− p)

n
.

Thus, we can interpret VSTAT(t) as incorporating variance information about
the query, with t the number size.

Remark 4.3.9 (Analyzing VSTAT). The oracle VSTAT is more complex to
analyze than STAT: the expression is asymmetric in the response and p =
ED[ϕ], and the range depends on the data distribution through p. However,
Feldman [Fel17] showed that VSTAT(t) is equivalent (up to a factor 3) to a

simpler oracle that outputs a response |
√
v −

√
ED[ϕ]| ≤ 1/

√
t. This version

is often much easier to analyze (see [Fel17, Lemma 5.2]).

The proof of Proposition 4.3.5 can be adapted to VSTAT(t) oracle (see
[FGR+17, Lemma 3.3]) to obtain the same lower bound q ≥ SDA(H1,D0, γ̄)
for SQ algorithms that make q query calls to VSTAT(1/(3γ̄)). In particular,
we immediately obtain the following lower bound for search problem with
VSTAT oracle:

106 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

Corollary 4.3.10 (SDA lower bound on VSTAT [FGR+17, Theorem 3.2]).
Let (H,F , φ) be a search problem with H ⊆ P(Z). For γ̄ > 0, if an SQ
algorithm solves this problem with q query calls to VSTAT(1/(3γ̄)), then we
must have

q ≥ SDA(H, γ̄). (4.3.6)

Pairwise correlation. Finally, we introduce a simpler notion than SDA,
that is more similar to our definition of the SQ dimension in Section 4.2.
While SDA is based on average correlations, the following definition impose
a bound on every pairwise correlation:

Definition 4.3.11 (Relative pairwise (γ, β)-correlation). We say that a set
of N distributions H = {D1, . . . ,DN} is (γ, β)-correlated relative to a distri-
bution D0 if:

|χD0
(Di,Dj)| ≤

{
β for i = j ∈ [N],

γ for i ̸= j ∈ [N].

The statistical dimension with (γ, β)-correlation of a detection problem
H1 versus D0 is the largest N such that there exists a subset H̃1 ⊆ H1 of size
N that is (γ, β)-correlated relative to D0. We denote it SDC(H1,D0, γ, β).
We can similarly define a statistical dimension for search problems:

Definition 4.3.12 (SDC with (γ, β)-correlation). The statistical dimension
of (H,F , φ) with (γ, β)-correlation is the largest value N such that there
exist D0 ∈ P(Z) and a finite set H̃ ⊆ H with the following property: for
any solution f ∈ F , the set H̃f = H̃ \ Hf has size |H̃f | ≥ N and is (γ, β)-
correlated relative to D0. We denote it by SDC(H, γ, β).

The statistical dimension with (γ, β)-correlation implies a lower bound on
the statistical dimension with average correlation:

Lemma 4.3.13 ([FGR+17, Lemma 3.10]). Let H be a set of N distributions
that is (γ, β)-correlated relative to D0. Then, for every γ̄ > γ,

SDA(H,D0, γ̄) ≥ N
γ̄ − γ
β − γ

. (4.3.7)

Proof. Denote d = N(γ̄ − γ)/(β − γ). Let us show that SDA(H,D0, γ̄) ≥ d:
for any set of distributions H̃ ⊆ H with

|H̃| ≥ |H|
d

=
N

d
=
β − γ
γ̄ − γ

, (4.3.8)

4.4. SQ AND NOISY GRADIENT DESCENT 107

we have

ρ(H̃,D0) =
1

|H̃|2
∑

D1,D2∈H̃

|χD0
(D1,D2)| ≤

β − γ
|H̃|

+ γ ≤ γ̄,

where we used (4.3.8) in the last inequality. This concludes the proof.

In particular, this immediately imply the same lower bound on SDA for
search problems: SDA(H, γ̄) ≥ N(γ̄ − γ)/(β − γ). Thus, together with The-
orem 4.3.7 and Corollary 4.3.10, we obtain the following lower bound based
on statistical dimension with (γ, β)-correlation:

Corollary 4.3.14 (SDC lower bound, search [FGR+17, Corollary 3.12]).
Let (H,F , φ) be a search problem with H ⊆ P(Z). For γ, β > 0, let N =
SDC(H, γ, β). For any γ̄ > γ, any SQ algorithm requires at least

q ≥ N
γ̄ − γ
β − γ

query calls to STAT(
√
γ̄) or VSTAT(1/(3γ̄)) oracles to solve (H,F , φ).

Hence, to show a SQ lower bounds on search problems (with either STAT
or VSTAT oracle), it is sufficient to identify a set of distributions H̃ ⊆ H and
a reference distribution D0 such that

• H̃ is (γ, β)-correlated relative to D0;

• For any solution f ∈ F , |H̃ \ Hf | ≥ N .

We will show an example of such a construction in Section 4.5 when studying
Gaussian single index models.

4.4 SQ and noisy gradient descent

Before turning to examples, we briefly return to the connection between noisy
GD and SQ algorithms discussed in Section 4.1. These two frameworks can
be viewed as learning under restricted access to data with two different noise
models: additive Gaussian noise for noisy GD and additive adversarial noise
for SQ. Both are meant as simplified models to capture statistical noise.

108 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

Among the two, the SQ model represents a more conservative choice. In
particular, any algorithm that succeeds with adversarial SQ access is guar-
anteed to succeed under statistical (or Gaussian) noise—but not vice versa.
While Gaussian noise and statistical noise are generally incomparable, the
Gaussian model appears to be a more realistic assumption in certain scenar-
ios, such as online learning, where fresh independent samples are drawn for
each query. In such settings, Gaussian noise may offer a more accurate model
than adversarial noise.

In this section, we further develop the connection between Gaussian and
adversarial noise models. Recall that Theorem 4.2.3 showed a similar lower
bound for CSQ algorithms as for noisy GD, in terms of a correlation alignment
complexity. We extend this connection in two directions:

• We define a new SQ oracle based on additive Gaussian noise and adapt
the junk flow technique to prove lower bounds against algorithms ac-
cessing this oracle. This generalizes the hardness results for noisy GD,
ruling out a broader class of algorithms under the Gaussian noise model.

• Conversely, we establish an alternative lower bound on noisy GD by
reducing a CSQ algorithm to noisy GD and transferring CSQ lower
bounds to noisy GD. Although this yields a looser lower bound than
the direct junk flow argument, it illustrates an interesting approach:
transferring hardness across different restricted models of computation
via reductions.

Gaussian statistical query oracle. We consider the following oracle which
replaces the adversarial noise from STAT(τ) to additive Gaussian noise.

Definition 4.4.1 (GSQ(τ) oracle). Let D ∈ P(Y × X) be the data distribu-
tion. Given noise level τ > 0, the Gaussian noise oracle GSQ(τ) takes as
input a query functions ϕ : Y ×X → [−1, 1] and returns a random value with
distribution

v ∼ N (ED[ϕ], τ 2). (4.4.1)

A (deterministic) GSQ algorithm with q queries is determined by q func-
tions Φt : Rt−1 → [−1, 1]Y×X , which given previous responses v1, . . . , vt−1
outputs a new query function ϕt := Φt(v1, . . . , vt−1) : Y × X → [−1, 1],
and an output function A : Rq → F , which given all q responses v1, . . . , vq,
outputs a solution A(v1, . . . , vq) ∈ F . Given a source distribution D, de-
fine sequentially the random query functions Φt(D) and the random scalar

4.4. SQ AND NOISY GRADIENT DESCENT 109

variables vt(D) as Φt(D) := Φt(v1(D), . . . , vt−1(D)) and vt(D) the output of
GSQ(τ) with input Φt(D). In particular

vt(D)
∣∣
Φt(D)

∼ N
(
ED[Φt(D)], τ 2

)
.

Further, denote A(D) the random variable in F as

A(D) := A(v1(D), . . . , vq(D)).

We show a lower bound on detection with GSQ algorithms analogous to
Theorem 4.1.6 with adversarial SQ noise.

Theorem 4.4.2. Let H ⊆ P(Y × X) be a class of target distributions, µH a
prior on H, and D0 ∈ P(Y × X) a null distribution. For any η ∈ (0, 1) and
any GSQ algorithm A with q queries and noise level τ , if

q

τ 2
≤ 4η2AlignSQ(µH,D0), (4.4.2)

then, there exists a joint coupling between A(D) and A(D0) such that

PD∼µH,A(D),A(D0) [A(D) = A(D0)] ≥ 1− η. (4.4.3)

Proof. This result follows by a straightforward adaptation of the proof of
Lemma 3.2.4. We can write

KL(L(A(D0))||L(A(D)))

=

q−1∑
t=0

EΦt∼L(Φt(D0)) [KL (L(vt+1(D0)|Φt(D0) = Φt)||L(vt+1(D)|Φt(D) = Φt))]

=
1

2τ 2

q−1∑
t=0

EΦt∼L(Φt(D0))

[
(ED[Φt]− ED0

[Φt])
2
]
.

By change of measure and definition of AlignSQ,

ED∼µHEΦt∼L(Φt(D0))

[
(ED[Φt]− ED0

[Φt])
2
]

≤ sup
∥ϕ∥D0

≤1
ED∼µH

[
⟨LD − 1, ϕ⟩2D0

]
= AlignSQ(µH,D0)

−1.

Thus we obtain the upper bound

ED∼µH [KL(L(A(D0))||L(A(D)))] ≤
q

2τ 2
· 1

AlignSQ(µH,D0)
.

The rest of the proof is identical to the proof of Lemma 3.2.4.

110 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

In other words, any GSQ algorithm fails to distinguish between D and D0

with probability at least 1 − δ over D ∼ µH and the Gaussian noise in the
queries, when

q/τ 2 = O
(
δ2AlignSQ(µH,D0)

)
.

This is the same query complexity as for SQ model (Theorem 4.1.6).
However, the lower bound based on SDA in Proposition 4.3.5 heavily

relies on the adversarial noise assumption and deterministic responses: GSQ
requires taking an union bound over h ∈ H, which makes the bound vacuous
in this model.

Reduction from CSQ to Noisy GD. We consider a reduction from CSQ
to noisy GD, but the same argument readily gives a reduction from the SQ
model to the GSQ model.

Fix an input distribution PX and a class of target functions H ⊆ RX . We
consider two algorithms:

• Noisy GD on target h: Let θ0
h, . . . ,θ

T
h be the trajectory of noisy

gradient descent with θ0
h ∼ ρ0 and updated the parameters via

θk+1
h = θk

h − ηkgh(θk
h) + ηkξ

k, where ξk ∼ N (0, τ 2Ip). (4.4.4)

Assume that the gradient has each coordinate clipped to 1, that is,
∥∇θf(·;θ)∥∞ ≤ 1 for all θ ∈ Rp.

• CSQ algorithm on target h: Let θ̃0
h, . . . , θ̃

T
h be the trajectory con-

structed by a (random) CSQ algorithm with tolerance τ̄ as follows: let
θ̃0
h ∼ ρ0 and iteratively define

θ̃k+1
h = θ̃k

h − ηkvh(θ̃
k
h) + ηkξ̃

k, where ξ̃k ∼ N (0, τ 2Ip), (4.4.5)

where vh(θ̃
k
h) is the vector of p responses from CSQ(τ̄) oracle, when

given the p inputs gh(θ̃
k
h). Recall that gradient on squared loss can

indeed be implemented within CSQ (by equation (4.2.2)). In particular,

∥vh(θ̃
k
h)− gh(θ̃

k
h)∥∞ ≤ 2τ̄ . (4.4.6)

Note that the total number of query call of this algorithm is pT .

We can show the following bound between the two trajectories:

4.4. SQ AND NOISY GRADIENT DESCENT 111

Lemma 4.4.3. Fix PX the input distribution and a target function h : X →
R. Then, there exists a joint coupling between θ≤Th the noisy GD trajectory

(4.4.4) and θ̃≤Th the CSQ trajectory (4.4.5), such that

P
[
θ≤kh = θ̃≤kh

]
≥ 1−

√
pT

τ̄

τ
. (4.4.7)

Proof. Again the result follows by adapting the proof of Lemma 3.2.4. We
have

KL(L(θ≤Th)||L(θ̃≤Th)) =
1

2τ 2

T−1∑
k=0

Eθ∼L(θk
h)

[∥∥∥vh(θ̃
k
h)− gh(θ̃

k
h)
∥∥∥2
2

]
≤ 2

Tpτ̄ 2

τ 2
.

The rest of the proof is identical and we omit it.

Set τ̄ = δτ√
pT
. Then the above lemma states that with probability at least

1− δ, we have θT
h = θ̃T

h . Thus, if any CSQ algorithms fail to solve a problem
with Tp queries and tolerance τ̄ = δτ√

pT
, so does noisy GD with probability

1− δ. For example, CSQ fails to solve the detection problem if

Tp

τ̄
< AlignCor(µH; g) =⇒ T <

δτ

p
(AlignCor(µH; g))

1/2 ,

and noisy GD fails with this number of steps with probability at least 1− δ.
For τ, δ = Θ(1), this is much worse than the bound we derived with junk
flow:

T ≤ 4δ2τ 2AlignCor(µH; g).

However, the advantage of this approach is that one can directly transfer
hardness of CSQ to hardness of noisy GD. For example, using CSQ-hardness
of learning parities (Theorem 4.2.7), we directly deduce the following inter-
esting result1:

Corollary 4.4.4. Noisy GD on a polynomially-sized neural network must
either take 2Ω(d) many steps or have noise level τ = 2−Ω(d) in order to learn
parity functions.

1Of course, one could have directly computed the correlation alignment complexity, which is 2d—see
Example 3.2.3—, and applied Theorem 3.2.2 to obtain this corollary.

112 CHAPTER 4. STATISTICAL QUERY ALGORITHMS

4.5 Examples

[TBD]
Correlation Alignment complexity already done for both. Mention that

it extends to CSQ (or SQ if binary valued).

4.5.1 Gaussian single-index models

we can do way much better by taking non-correlation queries (changing loss)
or reusing queries.

generative exponent.

Definition 4.5.1 (Generative exponent).

kG := inf{k ≥ 1 : ∃T : Y → R,ED[T (y)Hek(⟨w∗,x⟩)] ̸= 0}. (4.5.1)

discuss difference with info exponent (e.g., polynomials: we can always
transform them to be generative leap 1 or 2)

SQ query lower bound q/τ 2 ≥ dk∗/2 SQ alignment
But also on the number of samples. Computational statistical gap.
Matching algo

4.5.2 Sparse functions on the hypercube

[TBD] Leap complexity SQ-leap complexity
Give an example wehre it lower the leap
Matching algo.

Chapter 5

Low-degree polynomials

In this chapter, we provide a brief introduction to the low-degree polynomial
(LDP) method, a framework developed to study statistical-computational
tradeoffs in high-dimensional inference [BHK+19, HS17, HKP+17, Hop18].
The LDP method has proven particularly effective in predicting statistical-
computational gaps for a wide range of planted problems, including planted
clique, sparse PCA, tensor PCA, sparse linear regression, and many others.

Formally, low-degree polynomials can be viewed as a restricted model
of computation, in which the output of algorithms can be represented as a
multivariate polynomial of bounded degree in the input data. These algo-
rithms enjoy several desirable properties: they can be computed efficiently
and are robust to noise in the data. Many popular algorithms—including
spectral methods and approximate message passing—can be captured within
this framework. Remarkably, it was shown that low-degree polynomials are as
powerful as the best-known polynomial-time algorithms for many canonical
problems. This observation has led to the formulation of the so-called low-
degree conjecture, which posits that for a broad class of inference problems,
low-degree polynomials capture the full power of polynomial-time algorithms.
That is, for ‘nice’ problems, an efficient algorithm exists if and only if the
problem can be solved by a low-degree polynomial algorithm.

In this chapter, we focus on the application of the LDP framework to
detection problems, and illustrate its power by deriving a lower bound for
Gaussian single-index models. For a recent and comprehensive overview of
the LDP framework and its applications, we refer the reader to [Wei25]; see
also [KWB19] for another pedagogical introduction.

113

114 CHAPTER 5. LOW-DEGREE POLYNOMIALS

5.1 Background on hypothesis testing

A majority of the works on the LDP framework concerns the detection prob-
lem. As discussed in Chapter 4, a lower bound for detection implies a lower
bound for recovery (weak or strong learning). However, the converse does
not necessarily hold: recovery may still be hard even when detection is easy.
Recent work by Schramm and Wein [SW22] has extended the LDP frame-
work to the recovery setting, but the theory is comparatively less developed
and we will not pursue this direction.

In this section, we formally define our detection problem and review some
classical results on hypothesis testing.

Sequence of detection problems. Throughout this chapter, we are in-
terested in high-dimensional detection problems, which we formalize as a
sequence of hypothesis testing tasks indexed by some integer d (e.g., the di-
mension of the input space). We will be interested in how the computational
complexity of detection scales with d as d→∞.

Formally, let Z = (Z(d))d≥1 be a sequence of measurable spaces, for exam-

ple Z(d) := Y ×Rd, and let D = {D(d)}d≥1 and D0 = {D(d)
0 } be two sequences

of distributions on Z(d). For each d, the task is to distinguish between the

null hypothesis H0 : Z ∼ D(d)
0 and the alternative hypothesis H1 : Z ∼ D(d).

An algorithm that solves this problem defines a sequence of tests, that is,
functions T (d) : Z(d) → {0, 1}, that takes a sample Z from either D(d) or D
and outputs T (Z) = 1 if it guesses that the sample comes from D(d) and

T (Z) = 0 for D(d)
0 .

For notational simplicity, we will sometimes drop the superscript and leave
the dependency on d implicit.

Likelihood ratio and optimal test. In statistical parlance, a test makes
two possible types of errors:

• A type I error when the test falsely rejects the null (i.e., T (Z) = 1 when
Z ∼ D0);

• A type II error when the test fails to reject the null despite the alter-
native being true (i.e., T (Z) = 0 when Z ∼ D).

5.1. BACKGROUND ON HYPOTHESIS TESTING 115

We define the type I and type II error probabilities as:

α(T) := PZ∼D0
(T (Z) = 1),

β(T) := PZ∼D(T (Z) = 0),
(5.1.1)

and refer to 1− β(T) as the power of the test.
There is a fundamental tradeoff between type I and type II errors. For

instance, the constant test T ≡ 0 minimizes the type I error (α = 0) but has
no power (β = 1), while T ≡ 1 does the opposite. In statistics, one typically
fixes a tolerance α ∈ [0, 1] for the type I error and seeks a test maximizing
the power subject to α(T) ≤ α.

A foundational result—the Neyman–Pearson lemma—characterizes the
optimal solution to this tradeoff via the likelihood ratio test.

Definition 5.1.1 (Likelihood ratio test). Let D ≪ D0 and define the likeli-
hood ratio as the Radon-Nikodym derivative L(Z) := dD

dD0
(Z). The likelihood

ratio test with threshold η ≥ 0 is the test defined as

LRη(Z) :=

{
1 if L(Z) > η,

0 if L(Z) ≤ η.
(5.1.2)

Lemma 5.1.2 (Neyman-Pearson lemma [NP33]). For η ≥ 0, let α∗(η) :=
α(LRη). Among all tests T such that α(T) ≤ α∗(η), the lijelihood ratio test
LRη maximizes the power 1− β(T).

In other words, for any fixed level α ∈ [0, 1], the most powerful test that
controls the type I error at level α is (possibly a randomized version of) the
likelihood ratio test with a suitable threshold η such that α(LRη) = α.

Weak and strong detection. We consider two notions of success for our
detection problem in high dimensions:

Definition 5.1.3 (Weak or Strong detection). Let D0 = {D(d)
0 }d≥1 and D =

{D(d)} be sequences of distributions corresponding to the null and alternative
hypotheses, and let T = (T (d))d≥1 be a sequence of hypothesis tests.

(i) (Strong detection.) The test T achieves strong detection if it is correct
with high probability, that is, type I and II errors vanish asymptotically:

α(T) + β(T) = od(1). (5.1.3)

116 CHAPTER 5. LOW-DEGREE POLYNOMIALS

(ii) (Weak detection.) We say that the test achieves weak detection if it
performs strictly better than random guessing, with asymptotically non-
vanishing advantage:

α(T) + β(T) = 1− Ωd(1). (5.1.4)

The asymptotic (in)distinguishability of two sequences of distributions
can be characterized by the following notion of contiguity, an asymptotic
analogue of absolute continuity between measures:

Definition 5.1.4 (Contiguity). A sequence of distributions D = (D(d))d≥1
is said to be contiguous to another sequence D0 = (D(d)

0)d≥1, denoted D �

D0, if for any sequence of events (Ad)d≥1 with D(d)
0 (Ad) → 0, it holds that

D(d)(Ad)→ 0 as well.

Lemma 5.1.5. If either D�D0 or D0�D, then strong detection is impossible.
Conversely, if no test achieves weak detection, then both D�D0 and D0�D.

Proof. We identify a test T (d) with the event Ad := {T (d) = 1}. Suppose
D � D0 (the other case is symmetric), and assume for contradiction that
there exists a test T achieving strong detection. Then,

α(T) = D(d)
0 (Ad)→ 0, and β(T) = D(d)(Ac

d)→ 0.

Since D(d)
0 (Ad) → 0, contiguity implies D(d)(Ad) → 0, hence D(d)(Ac

d) → 1,
contradicting β(T)→ 0.

Conversely, suppose no test achieves weak detection. Then for all mea-
surable sequences T = (Ad)d≥1,

α(T) + β(T) = D(d)
0 (Ad) +D(d)(Ac

d) ≥ 1− od(1).

This implies

D(d)(Ad) ≤ D(d)
0 (Ad) + od(1),

and therefore, D �D0. The same argument shows D0 �D.

Thus, to rule out strong detection, it suffices to show that either D �D0

or D0 �D (as shown below, it will often be easier to show D �D0). Thanks
to Neyman-Pearson lemma, we know that the optimal test is based on the
likelihood ratio. Hence, it is natural to seek a criterion for weak and strong
detection in terms of the likelihood ratio. This leads to the following classical
criterion for detectability:

5.1. BACKGROUND ON HYPOTHESIS TESTING 117

Proposition 5.1.6. Let L := (Ld)d≥1 be the sequence of likelihood ratios.
Then:

(a) If ∥L∥2D0
= Od(1), then strong detection is impossible.

(b) If ∥L∥2D0
= 1 + od(1), then weak detection is impossible.

Proof. Let’s show that ∥L∥2D0
= Od(1) implies D�D0, and thus, strong detec-

tion is impossible by Lemma 5.1.5. Take any sequence of events (Ad)d≥1 such
that D0(Ad)→ 0. By change of measure and Cauchy–Schwarz inequality:

D(Ad) = ED0
[Ld(Z)1[Z ∈ Ad]] ≤ ∥L∥D0

√
D0(Ad)→ 0.

Hence D �D0.
For part (b), consider the total variation:

2 · TV(D,D0) = ED0
[|L− 1|] ≤ ∥L− 1∥D0

=
√
∥L∥2D0

− 1→ 0,

where we used that ⟨L, 1⟩D0
= 1 and therefore ∥L − 1∥2D0

= ∥L∥2D0
− 1. By

definition of the total variation distance, for any test T ,

α(T) + β(T) = D0(T = 1) + 1−D(T = 1) ≥ 1− TV(D,D0) = 1− od(1),

and no test achieves weak detection.

Proposition 5.1.6 is often referred to as the second moment method, and
provides a practical criterion for proving contiguity. In particular, to prove
impossibility of weak or strong detection, it is sufficient to control the L2-
norm of the likelihood ratio. However, the criteria in Proposition 5.1.6 are
not necessary: there are situations where strong detection is impossible even
though ∥L∥D0

→ ∞, due to rare “bad events” where the likelihood ratio
takes very large values. In such cases, more refined arguments—such as
conditioning on the complement of these bad events in the second moment
method—are required to establish contiguity.

An example: Principal Component Analysis. Let’s illustrate Propo-
sition 5.1.6 with a simple example. We consider the standard spiked Gaus-
sian Wigner model with uniform prior, and the task of detecting the signal.
Specifically, we consider Z = Symd(R) the space of d×d symmetric matrices:

118 CHAPTER 5. LOW-DEGREE POLYNOMIALS

H0: The data under the null Y ∼ D0 is drawn as

Y = W , (5.1.5)

where W is a d × d random symmetric matrix with entries Wii ∼
N (0, 2/d) and Wij ∼ N (0, 1/d) independently for i < j.

H1: The data under the alternative Y ∼ D is drawn as

Y = λuuT +W , (5.1.6)

where λ > 0, u ∼ γ̄d := Unif(Sd−1), and W ∼ D0.

When can we detect the signal, that is, distinguish between distributions
with λ > 0 and λ = 0? The following lemma bound the second moment of
this detection problem

Lemma 5.1.7. If λ < 1, then ∥L∥2D0
= Od(1) and strong detection is impos-

sible.

Proof. The likelihood ratio in this setting simplifies to

dD
dD0

(Y) =
Eu∼γ̄d

[
exp

(
−d

4∥Y − λuu
T∥2F

)]
exp

(
−d

4∥Y ∥
2
F

)
= Eu∼γ̄d

[
exp

(
dλ

2
uTY u− dλ2

4

)]
.

Now passing to the second moment:∥∥∥∥ dDdD0

∥∥∥∥2
D0

= Eu,v∼γ̄dEY ∼D0

[
exp

(
dλ

2
[uTY u+ vTY v]− dλ2

2

)]
= Eu,v∼γ̄d

[
exp

(
dλ2

4
∥uuT + vvT∥2F −

dλ2

2

)]
= Eu,v∼γ̄d

[
exp

(
dλ2

2
⟨u,v⟩2

)]
,

(5.1.7)

where on the second line we used that uTY u+ vTY v is a Gaussian random
variable with variance 2∥uuT + vvT∥2F/d, and we simplified the Gaussian
moment-generating function (MGF).

5.1. BACKGROUND ON HYPOTHESIS TESTING 119

Under the uniform distribution over the sphere, ⟨u,u′⟩2 ∼ Beta(12 ,
d−1
2).

The second moment simply corresponds to the MGF of a Beta distribution
at t = dλ2/2, and we can compute it exactly in terms of a confluent hyperge-
ometric function. Here, we only need to prove an upper bound uniform in d,
and we use instead that P(|⟨u,v⟩| ≥ t) ≤ 2 exp(−dt2/2) (that is, (1/d)-sub-
Gaussianity tails):

Eu,v∼γ̄d

[
exp

(
dλ2

2
⟨u,v⟩2

)]
=

∫ ∞
0

P
[
exp

(
dλ2

2
⟨u,v⟩2

)
≥ t

]
dt

=

∫ ∞
0

P

[
|⟨u,v⟩| ≥

√
2 log t

dλ2

]
dt

≤
∫ ∞
0

2t−1/λ
2

dt,

which is finite for λ < 1.

In fact, one can show that for λ < 1, ∥L∥2D0
converges to (1 − λ2)−1/2,

while ∥L∥2D0
diverges for λ > 1. By Proposition 5.1.6, strong detection is

impossible for λ < 1. On the other hand, strong detection is possible for
λ > 1 by simply computing the top eigenvalue λmax := λmax(Y):

• If Y ∼ D with λ ≤ 1 (including the null λ = 0), then λmax converges
almost surely to 2.

• If Y ∼ D with λ > 1, then λmax converges almost surely to λ+1/λ > 2.

Thus the test that simply thresholds the top eigenvalue {λmax(Y) ≥ η} for
any 2 < η < λ+ 1/λ has vanishing type I and II errors asymptotically.

The critical value λ = 1 is often referred to as the Baik-Ben Arous-
Péché (BBP) transition [BBAP05, BS06, Péc06]. Below this value, D � D0,
while above this value, D is not contiguous to D0 because strong detection is
possible. For the interested reader that might be wondering what happens at
λ = 1, Johnstone and Onatski [JO20] showed that strong detection is possible
at this critical value.

Polynomial-time detection. We have seen that the likelihood ratio test
is statistically optimal, and that its L2-norm provides a convenient way to
certify the impossibility of weak or strong detection. However, computing
the likelihood ratio is generally intractable, as it often requires summing over

120 CHAPTER 5. LOW-DEGREE POLYNOMIALS

an exponentially large space. Thus, while the likelihood ratio characterizes
information-theoretic (statistical) limits, it may not correspond to any fea-
sible algorithm. Instead, we would like to restrict our attention to ‘feasible’
tests, that is, tests that are computable in polynomial time (polynomial in d).
This leads to computational analogues of weak and strong distinguishability,
where we require the test to be efficiently implementable.

Clearly, requiring distinguishability via a polynomial-time algorithm is
a much stronger constraint than information-theoretic distinguishability. In
the spiked Gaussian Wigner model, we saw that as soon as strong detec-
tion is possible, an efficient test exists, based on thresholding the top eigen-
value. However, in general, statistical distinguishability does not imply the
existence of a polynomial-time algorithm. This phenomenon is known as
a statistical–computational gap. The planted clique problem is a canonical
example:

Problem 5.1.8 (Planted Clique). Let Zd denote the space of undirected
graphs on d vertices, represented as binary vectors e = (eij)i<j∈[d] ∈ {0, 1}d(d−1)/2,
where eij = 1 indicates an edge between vertices i and j. Consider the fol-
lowing hypothesis testing problem:

H0: Under the null, we observe an Erdös-Rényi graph G(d, 1/2), where each
edge appears independently with probability 1/2.

H1: Under the alternative, we first choose a random subset S ⊂ [d] of size
|S| = k. The graph is then drawn by placing edges with probability 1
between all pairs {i, j} ⊆ S (i.e., forming a planted clique), and with
probability 1/2 between all other pairs.

Under the alternative, the graph is a random Erdös-Rényi graph with
a planted k-clique. When are these two distributions distinguishable? And
when does there exist a polynomial-time algorithm that can perform the task?

• Statistical threshold: The largest clique in a random graph G(d, 1/2)
has size approximately kstat = 2 log2(d) with high probability. Thus, if
k ≥ (1+ ε)kstat, one can achieve strong detection by finding the largest
clique: the maximum clique will, with high probability, correspond to
the planted one. Conversely, if k ≤ (1−ε)kstat, it can be shown that no
test (even computationally unbounded) can distinguish the hypotheses.

5.2. LOW-DEGREE POLYNOMIALS 121

• Computational threshold: The brute-force algorithm that finds the
largest clique requires enumerating all

(
d
k

)
subsets and is computation-

ally infeasible for large d. Is there an efficient algorithm for planted
clique detection? Despite decades of work, the best known polynomial-
time algorithms succeed only when k = Ω(

√
d) [Kuč95, AKS98]. This

leads to the conjecture that the computational threshold is kcomp ≈
√
d,

and that for kstat ≪ k ≪ kcomp, detection is information-theoretically
possible but computationally intractable.

How can we provide evidence for the conjectured computational threshold
kcomp? Earlier, we saw that statistical indistinguishability can be established
by bounding the L2-norm of the likelihood ratio. But to reason about the lim-
its of efficient algorithms, we need a different framework—one that captures
the power of polynomial-time computation.

This is precisely the motivation behind the low-degree (polynomial) method.
The idea is to restrict attention to test statistics that are multivariate poly-
nomials in the input of bounded degree D, and analyze their performance.
In particular, we will examine the low-degree likelihood ratio, which is the
projection of the likelihood ratio onto degree-D polynomials. We will see
that bounding its L2-norm is conjectured to provide a sharp criterion for
computational detectability.

5.2 Low-degree polynomials

We now describe the low-degree method. The idea is to use low-degree mul-
tivariate polynomials as a proxy for polynomial-time computable functions.
For many ‘nice enough’ problems, low-degree polynomials appear to capture
the power of all known polynomial-time algorithms, that is, the problem is
solvable by an efficient algorithm if, and only if, it is solvable by a low-degree
polynomial. Thus, lower bounds against low-degree polynomials are taken
as evidence that no efficient algorithm exists. This is formalized as the low-
degree conjecture.

Low degree polynomials. Let Z ⊆ RN be the input space for our detection
problem. We denote by R≤D[Z] the space of real-valued polynomials in Z =

122 CHAPTER 5. LOW-DEGREE POLYNOMIALS

[z1, . . . , zN] of total degree at most D, i.e.,

R≤D[Z] = span

∏
i∈[N]

zβi

i : (β1, . . . , βN) ∈ ZN
≥0,

N∑
i=1

βi ≤ D

 .

We further denote V≤D ⊆ L2(D0) the subspace of polynomials of degree
at most D in L2(D0) (which induces an inner-product ⟨·, ·⟩D0

structure on
R≤D[Z]). Let P≤D denote the orthogonal projection onto V≤D in L2(D0).

The low-degree likelihood ratio. In the previous section, we saw that the
likelihood ratio provides an information-theoretic optimal test to distinguish
between distributions. Below, we introduce an analogous optimal test, now
restricted to low-degree polynomials:

Definition 5.2.1 (Low-degree likelihood ratio). Consider a likelihood ratio
function L = dD/dD0 ∈ L2(D0). Then, the D-low-degree likelihood ratio
(D-LDLR) is defined as L≤D := P≤DL.

Let’s provide some high level motivation for this quantity, before dis-
cussing more formal justifications later in this section. With unbounded
computation, the L2-norm of the likelihood ratio characterizes indistinguisha-
bility: we can write this criterion in variational form as

∥L∥D0
= sup

f :Z→R

ED[f(Z)]√
ED0

[f(Z)2]
, (5.2.1)

with the supremum uniquely attained at f = L/∥L∥D0
(this follows by rewrit-

ing the numerator as ⟨L, f⟩D0
). This suggests to measure the quality for a

test statistics f using the following ‘signal-to-noise ratio’:

ED[f(Z)]
∥f∥D0

.

To find an optimal computable test, we could therefore restrict the opti-
mization in (5.2.1) to only maximizing over f that are polynomial-time com-
putable. Restricting to low-degree polynomials, the following proposition
shows that L≤D is indeed optimal following this heuristic:

5.2. LOW-DEGREE POLYNOMIALS 123

Proposition 5.2.2. Let L≤D be the D-LDLR. Then

∥L≤D∥D0
= sup

f∈R≤D[Z]

EZ∼D[f(Z)]√
EZ∼D0

[f(Z)2]
, (5.2.2)

and the maximum is uniquely achieved at f∗ := L≤D/∥L≤D∥D0
.

Proof. Simply rewrite the variational problem as

sup
f :Z→R

ED[P≤Df(Z)]
∥P≤Df∥D0

= sup
f :Z→R

⟨P≤DL,P≤Df⟩D0

∥P≤Df∥D0

.

The proposition follows by Cauchy-Schwarz.

The following conjecture, central to the low-degree method, posits that
the second-moment criterion for statistical indistinguishability has a compu-
tational analogue when restricted to low-degree polynomials. That is, if the
low-degree likelihood ratio has small norm, then no polynomial-time algo-
rithm can distinguish the two distributions:

Conjecture 5.2.3 (Low-degree conjecture, informal). Let D and D0 be “nice
enough” sequences of distributions. If there exists ε > and a sequence of
degrees D = (Dd)d≥1 with Dd ≥ (log(d))1+ε for which the following holds:

(a) If ∥L≤D∥D0
= Od(1), then no polynomial-time algorithm can achieve

strong detection;

(b) If ∥L≤D∥D0
= 1+ od(1), then no polynomial-time algorithm can achieve

weak detection.

Informally, this conjecture suggests that polynomials of degree at most
log(d) can be used as proxy for any polynomial-time algorithm. We will
return to this conjecture later in this section: in particular, we will discuss
what is meant by “nice enough”, why the degree D scales as log(d), and what
evidence supports (or challenges) the low-degree conjecture.

Weak and strong separation. We saw in Chapter 4 that a lower bound
on SQ rules out success of any SQ algorithm under adversarial noise. This is
somewhat believed to rule out noise-robust algorithm under statistical noise.
What about low-degree polynomials? What algorithm can we formally rule
out with the criterion in Conjecture 5.2.3?

124 CHAPTER 5. LOW-DEGREE POLYNOMIALS

Ideally, by analogy to the likelihood ratio and the above construction,
we would like to rule out weak or strong detection for any test that can be
written as {f(Z) ≥ t} where f is a degree-D polynomial. Let’s introduce the
following weaker notion of success for low-degree polynomials:

Definition 5.2.4 (Weak and strong separation). We say that a sequence of
polynomials f = (fd)d≥1, fd : Z(d) → R, strongly separates distributions D
and D0 if√

max {VarD(f),VarD0
(f)} = od (|ED[f]− ED0

[f]|) , (5.2.3)

and weakly separates D and D0 if√
max {VarD(f),VarD0

(f)} = Od (|ED[f]− ED0
[f]|) . (5.2.4)

Proposition 5.2.5. If a sequence of functions f strongly (resp. weakly) sep-
arates D and D0, then it achieves strong (resp. weak) detection.

Proof. Suppose f strongly separates D and D0. Denote δ = ED[f] − ED0
[f]

and assume δ > 0 without loss of generality. Consider the test that rejects
the null if f(Z) ≥ ED0

[f] + δ/2. Then, by Markov’s inequality

PD0
(f(Z) ≥ ED0

[f] + δ/2) ≤ PD0
(|f(Z)− ED0

[f]| ≥ δ/2)

≤ 4
VarD0

(f)

δ2
= od(1),

where we used (5.2.3). Similarly,

PD (f(Z) < ED0
[f] + δ/2) ≤ PD (|f(Z)− ED[f]| ≥ δ/2)

≤ 4
VarD(f)

δ2
= od(1).

We conclude that this test achieves strong detection.
For weak separation, a similar thresholding test {f(Z) ≥ t} achieves weak

detection, but now with t not necessarily the midpoint. The proof is more
involved and we refer to [KSWY25, Proposition 3.2] for details.

Thus, strong and weak separations give simple, sufficient conditions for
weak and strong detection, based only on the two first moments of the poly-
nomial function f . The following proposition shows that L2-norm bounds on
the low-degree likelihood ratio rules out this weaker version of detectability:

5.2. LOW-DEGREE POLYNOMIALS 125

Proposition 5.2.6. Let L≤D be the sequence of low-degree likelihood ratios
as defined in Definition 5.2.1, for some sequence of degrees D = (Dd)d≥1.
Then:

(a) If ∥L≤D∥2D0
= Od(1), then no sequence of degree-D polynomials strongly

separates D and D0.

(b) If ∥L≤D∥2D0
= 1+od(1), then no sequence of degree-D polynomials weakly

separates D and D0.

Proof. From the definition, showing that no degree-D polynomial weakly or
strongly separates D and D0 is equivalent to showing that

sup
f∈R≤D[Z]

ED[f]− ED0
[f]√

max {VarD(f),VarD0
(f)}

is od(1) or Od(1) respectively. Without loss of generality, we can impose
ED0

[f] = 0. Let us further relax the denominator, which is lower bounded by
VarD0

(f)1/2 = ∥f∥D0
. Thus the above display is upper bounded by

sup
f∈R≤D[Z],ED0

[f]=0

ED[f]
∥f∥D0

≤ sup
f∈R≤D[Z]

ED[f]− ED0
[f]

∥f∥D0

= sup
f

⟨L− 1,P≤Df⟩D0

∥P≤Df∥D0

= ∥L≤D − 1∥D0
=
√
∥L≤D∥D2

0
− 1.

Assuming either ∥L≤D∥2D0
= Od(1) or ∥L≤D∥2D0

= 1 + od(1) directly implies
failure of strong and weak separation respectively.

In Proposition 5.2.6, the statement is not bidirectional: there are examples
where ∥L≤D∥D0

is diverging but strong separation is impossible [DMW25].
Indeed, in the proof we only show part of the strong separation criterion:
we do not control the variance under the alternative VarD(f). Since coun-
terexamples have been found, now people prefer to use directly weak and
strong separations as criterion of hardness: the threshold under this sepa-
ration criterion indeed match the (conjectured) computational threshold in
these counterexamples. [TBD]

126 CHAPTER 5. LOW-DEGREE POLYNOMIALS

Summary. [TBD] Convenient criterion that can be computed in many set-
tings.

If we have an orthonormal basis of R[Z]≤D with respect to D0. Then we
have simply

∥L≤D∥2D0
=

k∑
i=0

EZ∼D[ϕi(Z)]
2.

How to compute with basis. Use example.

5.2.1 Discussion on the low-degree conjecture

We refer to [Wei25]. [TBD]

Computational complexity of degree-D algo. why log d and spectral
algorithms.

Robustness to noise. Why low-degree polynomials: Properties of low-
degree polynomials: insensitive to low probability evens + adding noise makes
functions become low-degree.

Ruling out low degree threshold functions The LDLR bound only rules
out strong and weak separation. A more natural class of test to rule out would
be all polynomial threshold function {f(Z) ≥ t} for f polynomial. How-
ever, our current lower bounds only rules out a control with second moment
method.

PZ∼D(f(Z)− ED[f] ≥ t) ≤ P(|f(Z)− ED[f]| ≥ t)

[KWB19, Theorem 4.3].

Formal conjecture. What are the nice problems for the conjecture to hold.

Equivalence between LDP and SQ. [BBH+20] ALSO, mention Franz-
Parisi criterion [BEAH+22, CMZZ25]) Interesting direction to connect (and
unify) different notions of hardness.

5.3 Example: Gaussian single-index models

[TBD]

5.3. EXAMPLE: GAUSSIAN SINGLE-INDEX MODELS 127

For sparse function, no statistical-computational gaps.
There is some evidence that gradient descent will not be able to achieve

(online SGD sufficient O(dk∗−1)) but it remains open either way.

128 CHAPTER 5. LOW-DEGREE POLYNOMIALS

Bibliography

[AAM22] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz,
The merged-staircase property: a necessary and nearly suffi-
cient condition for sgd learning of sparse functions on two-layer
neural networks, Conference on Learning Theory, PMLR, 2022,
pp. 4782–4887.

[AAM23] , Sgd learning on neural networks: leap complexity and
saddle-to-saddle dynamics, The Thirty Sixth Annual Conference
on Learning Theory, PMLR, 2023, pp. 2552–2623.

[AB09] Sanjeev Arora and Boaz Barak, Computational complexity: a
modern approach, Cambridge University Press, 2009.

[ABA22] Emmanuel Abbe and Enric Boix-Adsera, On the non-
universality of deep learning: quantifying the cost of symmetry,
Advances in Neural Information Processing Systems 35 (2022),
17188–17201.

[ABAB+21] Emmanuel Abbe, Enric Boix-Adsera, Matthew S Brennan, Guy
Bresler, and Dheeraj Nagaraj, The staircase property: How hi-
erarchical structure can guide deep learning, Advances in Neural
Information Processing Systems 34 (2021), 26989–27002.

[ACHM22] Emmanuel Abbe, Elisabetta Cornacchia, Jan Hazla, and
Christopher Marquis, An initial alignment between neural net-
work and target is needed for gradient descent to learn, Interna-
tional Conference on Machine Learning, PMLR, 2022, pp. 33–52.

[AGJ21] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath, On-
line stochastic gradient descent on non-convex losses from high-
dimensional inference, Journal of Machine Learning Research 22
(2021), no. 106, 1–51.

129

130 BIBLIOGRAPHY

[AKM+21] Emmanuel Abbe, Pritish Kamath, Eran Malach, Colin Sandon,
and Nathan Srebro, On the power of differentiable learning ver-
sus pac and sq learning, Advances in Neural Information Pro-
cessing Systems 34 (2021), 24340–24351.

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov, Finding
a large hidden clique in a random graph, Random Structures &
Algorithms 13 (1998), no. 3-4, 457–466.

[Aro50] Nachman Aronszajn, Theory of reproducing kernels, Transac-
tions of the American mathematical society 68 (1950), no. 3,
337–404.

[AS20] Emmanuel Abbe and Colin Sandon, Poly-time universality and
limitations of deep learning, arXiv preprint arXiv:2001.02992
(2020).

[AZL20] Zeyuan Allen-Zhu and Yuanzhi Li, Backward feature correction:
How deep learning performs deep learning, arXiv:2001.04413
(2020).

[Bac17] Francis Bach, Breaking the curse of dimensionality with convex
neural networks, The Journal of Machine Learning Research 18
(2017), no. 1, 629–681.

[Bac24] , Learning theory from first principles, MIT press, 2024.

[Bar93] Andrew R Barron, Universal approximation bounds for superpo-
sitions of a sigmoidal function, IEEE Transactions on Informa-
tion theory 39 (1993), no. 3, 930–945.

[BBAP05] Jinho Baik, Gérard Ben Arous, and Sandrine Péché, Phase tran-
sition of the largest eigenvalue for nonnull complex sample co-
variance matrices.

[BBH+20] Matthew Brennan, Guy Bresler, Samuel B Hopkins, Jerry Li,
and Tselil Schramm, Statistical query algorithms and low-degree
tests are almost equivalent, arXiv:2009.06107 (2020).

[BBPV23] Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien, On
learning gaussian multi-index models with gradient flow, arXiv
preprint arXiv:2310.19793 (2023).

BIBLIOGRAPHY 131

[BBV06] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala, Ker-
nels as features: On kernels, margins, and low-dimensional map-
pings, Machine Learning 65 (2006), 79–94.

[BCF+24] Boaz Barak, Annabelle Carrell, Alessandro Favero, Weiyu Li,
Ludovic Stephan, and Alexander Zlokapa, Computational com-
plexity of deep learning: fundamental limitations and empirical
phenomena, Journal of Statistical Mechanics: Theory and Ex-
periment 2024 (2024), no. 10, 104008.

[BCRT20] Giulio Biroli, Chiara Cammarota, and Federico Ricci-Tersenghi,
How to iron out rough landscapes and get optimal performances:
averaged gradient descent and its application to tensor pca, Jour-
nal of Physics A: Mathematical and Theoretical 53 (2020),
no. 17, 174003.

[BEAH+22] Afonso S Bandeira, Ahmed El Alaoui, Samuel Hopkins, Tselil
Schramm, Alexander S Wein, and Ilias Zadik, The franz-
parisi criterion and computational trade-offs in high dimensional
statistics, Advances in Neural Information Processing Systems
35 (2022), 33831–33844.

[Bec75] William Beckner, Inequalities in fourier analysis, Annals of
Mathematics 102 (1975), no. 1, 159–182.

[Bec92] , Sobolev inequalities, the poisson semigroup, and analy-
sis on the sphere sn., Proceedings of the National Academy of
Sciences 89 (1992), no. 11, 4816–4819.

[BF02] Nader H Bshouty and Vitaly Feldman, On using extended sta-
tistical queries to avoid membership queries, Journal of Machine
Learning Research 2 (2002), no. Feb, 359–395.

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns,
Yishay Mansour, and Steven Rudich, Weakly learning dnf and
characterizing statistical query learning using fourier analysis,
Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, 1994, pp. 253–262.

132 BIBLIOGRAPHY

[BFT17] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky,
Spectrally-normalized margin bounds for neural networks, Ad-
vances in neural information processing systems 30 (2017).

[BHK+19] Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K
Kothari, Ankur Moitra, and Aaron Potechin, A nearly tight
sum-of-squares lower bound for the planted clique problem, SIAM
Journal on Computing 48 (2019), no. 2, 687–735.

[BKM+19] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane,
and Lenka Zdeborová, Optimal errors and phase transitions in
high-dimensional generalized linear models, Proceedings of the
National Academy of Sciences 116 (2019), no. 12, 5451–5460.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman, Noise-tolerant
learning, the parity problem, and the statistical query model,
Journal of the ACM (JACM) 50 (2003), no. 4, 506–519.

[BMR21] Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin,
Deep learning: a statistical viewpoint, Acta numerica 30 (2021),
87–201.

[Bon70] Aline Bonami, Étude des coefficients de fourier des fonctions de
lp(g), Annales de l’institut Fourier, vol. 20, 1970, pp. 335–402.

[BR88] Avrim Blum and Ronald Rivest, Training a 3-node neural net-
work is np-complete, Advances in neural information processing
systems 1 (1988).

[BS06] Jinho Baik and Jack W Silverstein, Eigenvalues of large sam-
ple covariance matrices of spiked population models, Journal of
multivariate analysis 97 (2006), no. 6, 1382–1408.

[BTA11] Alain Berlinet and Christine Thomas-Agnan, Reproducing ker-
nel hilbert spaces in probability and statistics, Springer Science
& Business Media, 2011.

[CDV07] Andrea Caponnetto and Ernesto De Vito, Optimal rates for
the regularized least-squares algorithm, Foundations of Compu-
tational Mathematics 7 (2007), no. 3, 331–368.

BIBLIOGRAPHY 133

[Chi11] Theodore S Chihara, An introduction to orthogonal polynomials,
Courier Corporation, 2011.

[CMM21] Michael Celentano, Theodor Misiakiewicz, and Andrea Monta-
nari,Minimum complexity interpolation in random features mod-
els, arXiv:2103.15996 (2021).

[CMZZ25] Siyu Chen, Theodor Misiakiewicz, Ilias Zadik, and Peiyuan
Zhang, An optimized franz-parisi criterion and its equivalence
with sq lower bounds, arXiv:2506.06259 (2025).

[COB19] Lenaic Chizat, Edouard Oyallon, and Francis Bach, On lazy
training in differentiable programming, NeurIPS 2019-33rd
Conference on Neural Information Processing Systems, 2019,
pp. 2937–2947.

[Dai13] Feng Dai, Approximation theory and harmonic analysis on
spheres and balls, Springer, 2013.

[DH18] Rishabh Dudeja and Daniel Hsu, Learning single-index models in
gaussian space, Conference On Learning Theory, PMLR, 2018,
pp. 1887–1930.

[DKL+23] Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and
Ludovic Stephan, How two-layer neural networks learn, one (gi-
ant) step at a time, arXiv preprint arXiv:2305.18270 (2023).

[DLSS14] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz, From av-
erage case complexity to improper learning complexity, Proceed-
ings of the forty-sixth annual ACM symposium on Theory of
computing, 2014, pp. 441–448.

[DM20] Amit Daniely and Eran Malach, Learning parities with neural
networks, Advances in Neural Information Processing Systems
33 (2020), 20356–20365.

[DMW25] Abhishek Dhawan, Cheng Mao, and Alexander S Wein, Detec-
tion of dense subhypergraphs by low-degree polynomials, Random
Structures & Algorithms 66 (2025), no. 1, e21279.

134 BIBLIOGRAPHY

[DNGL23] Alex Damian, Eshaan Nichani, Rong Ge, and Jason D Lee,
Smoothing the landscape boosts the signal for sgd: Optimal sam-
ple complexity for learning single index models, Advances in Neu-
ral Information Processing Systems 36 (2023), 752–784.

[DPVLB24] Alex Damian, Loucas Pillaud-Vivien, Jason Lee, and Joan
Bruna, Computational-statistical gaps in gaussian single-index
models, The Thirty Seventh Annual Conference on Learning
Theory, PMLR, 2024, pp. 1262–1262.

[Duc24] John Duchi, Lecture notes for statistics and information theory,
Personal Website (2024).

[DV21] Amit Daniely and Gal Vardi, From local pseudorandom gener-
ators to hardness of learning, Conference on Learning Theory,
PMLR, 2021, pp. 1358–1394.

[DW18] Edgar Dobriban and Stefan Wager, High-dimensional asymp-
totics of prediction: Ridge regression and classification, The An-
nals of Statistics 46 (2018), no. 1, 247–279.

[Fel11] Vitaly Feldman, Distribution-independent evolvability of linear
threshold functions, Proceedings of the 24th Annual Conference
on Learning Theory, JMLR Workshop and Conference Proceed-
ings, 2011, pp. 253–272.

[Fel12] , A complete characterization of statistical query learn-
ing with applications to evolvability, Journal of Computer and
System Sciences 78 (2012), no. 5, 1444–1459.

[Fel17] , A general characterization of the statistical query com-
plexity, Conference on learning theory, PMLR, 2017, pp. 785–
830.

[FGR+17] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S Vem-
pala, and Ying Xiao, Statistical algorithms and a lower bound
for detecting planted cliques, Journal of the ACM (JACM) 64
(2017), no. 2, 1–37.

[FH23] Vincent Froese and Christoph Hertrich, Training neural net-
works is np-hard in fixed dimension, Advances in Neural Infor-
mation Processing Systems 36 (2023), 44039–44049.

BIBLIOGRAPHY 135

[FPV15] Vitaly Feldman, Will Perkins, and Santosh Vempala, On the
complexity of random satisfiability problems with planted solu-
tions, Proceedings of the forty-seventh annual ACM symposium
on Theory of Computing, 2015, pp. 77–86.

[GJ02] Michael R Garey and David S Johnson, Computers and in-
tractability, vol. 29, wh freeman New York, 2002.

[GKK+24] Cédric Gerbelot, Avetik Karagulyan, Stefani Karp, Kavya
Ravichandran, Menachem Stern, and Nathan Srebro, Applying
statistical learning theory to deep learning, Journal of Statisti-
cal Mechanics: Theory and Experiment 2024 (2024), no. 10,
104003.

[Gla23] Margalit Glasgow, Sgd finds then tunes features in two-layer
neural networks with near-optimal sample complexity: A case
study in the xor problem, arXiv preprint arXiv:2309.15111
(2023).

[GMMM21] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and An-
drea Montanari, Linearized two-layers neural networks in high
dimension, The Annals of Statistics 49 (2021), no. 2, 1029–1054.

[Gro75] Leonard Gross, Logarithmic sobolev inequalities, American Jour-
nal of Mathematics 97 (1975), no. 4, 1061–1083.

[HKP+17] Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad
Raghavendra, Tselil Schramm, and David Steurer, The power
of sum-of-squares for detecting hidden structures, 2017 IEEE
58th Annual Symposium on Foundations of Computer Science
(FOCS), IEEE, 2017, pp. 720–731.

[Hop18] Samuel Hopkins, Statistical inference and the sum of squares
method, Cornell University, 2018.

[HS17] Samuel B Hopkins and David Steurer, Bayesian estimation
from few samples: community detection and related problems,
arXiv:1710.00264 (2017).

[HSSVG21] Daniel Hsu, Clayton H Sanford, Rocco Servedio, and Em-
manouil Vasileios Vlatakis-Gkaragkounis, On the approximation

136 BIBLIOGRAPHY

power of two-layer networks of random relus, Conference on
Learning Theory, PMLR, 2021, pp. 2423–2461.

[Hsu21] Daniel Hsu, Dimension lower bounds for linear approaches to
function approximation, Daniel Hsu’s homepage (2021).

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler, Neural tan-
gent kernel: Convergence and generalization in neural networks,
Advances in neural information processing systems 31 (2018).

[JKMS25] Nirmit Joshi, Hugo Koubbi, Theodor Misiakiewicz, and Nathan
Srebro, Learning single-index models via harmonic decomposi-
tion, arXiv:2506.09887 (2025).

[JMS24] Nirmit Joshi, Theodor Misiakiewicz, and Nathan Srebro, On
the complexity of learning sparse functions with statistical and
gradient queries, arXiv preprint arXiv:2407.05622 (2024).

[JO20] Iain M Johnstone and Alexei Onatski, Testing in high-
dimensional spiked models, The Annals of Statistics 48 (2020),
no. 3.

[Jud87] J Stephen Judd, Learning in networks is hard, Proc. of 1st Inter-
national Conference on Neural Networks, San Diego, California,
June 1987, IEEE, 1987.

[KCGK24] Yiwen Kou, Zixiang Chen, Quanquan Gu, and Sham Kakade,
Matching the statistical query lower bound for k-sparse parity
problems with sign stochastic gradient descent, Advances in Neu-
ral Information Processing Systems 37 (2024), 113001–113037.

[Kea98] Michael Kearns, Efficient noise-tolerant learning from statistical
queries, Journal of the ACM (JACM) 45 (1998), no. 6, 983–1006.

[Kha93] Michael Kharitonov, Cryptographic hardness of distribution-
specific learning, Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, 1993, pp. 372–381.

[KMS20] Pritish Kamath, Omar Montasser, and Nathan Srebro, Ap-
proximate is good enough: Probabilistic variants of dimensional
and margin complexity, Conference on Learning Theory, PMLR,
2020, pp. 2236–2262.

BIBLIOGRAPHY 137

[KS09] Adam R Klivans and Alexander A Sherstov, Cryptographic hard-
ness for learning intersections of halfspaces, Journal of Com-
puter and System Sciences 75 (2009), no. 1, 2–12.

[KSWY25] Dmitriy Kunisky, Daniel A Spielman, Alexander S Wein, and
Xifan Yu, Statistical inference of a ranked community in a di-
rected graph, Proceedings of the 57th Annual ACM Symposium
on Theory of Computing, 2025, pp. 2107–2117.

[Kuč95] Luděk Kučera, Expected complexity of graph partitioning prob-
lems, Discrete Applied Mathematics 57 (1995), no. 2-3, 193–212.

[KWB19] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira,
Notes on computational hardness of hypothesis testing: Predic-
tions using the low-degree likelihood ratio, ISAAC Congress (In-
ternational Society for Analysis, its Applications and Computa-
tion), Springer, 2019, pp. 1–50.

[LY22] Yue M Lu and Horng-Tzer Yau, An equivalence principle for the
spectrum of random inner-product kernel matrices with polyno-
mial scalings, arXiv preprint arXiv:2205.06308 (2022).

[LZZ24] Shuchen Li, Ilias Zadik, and Manolis Zampetakis, On the hard-
ness of learning one hidden layer neural networks, arXiv preprint
arXiv:2410.03477 (2024).

[McC84] Peter McCullagh, Generalized linear models, European Journal
of Operational Research 16 (1984), no. 3, 285–292.

[Mis22] Theodor Misiakiewicz, Spectrum of inner-product kernel matri-
ces in the polynomial regime and multiple descent phenomenon
in kernel ridge regression, arXiv:2204.10425 (2022).

[MM24] Theodor Misiakiewicz and Andrea Montanari, Six lectures on
linearized neural networks, Journal of Statistical Mechanics:
Theory and Experiment 2024 (2024), no. 10, 104006.

[MMM22] Song Mei, Theodor Misiakiewicz, and Andrea Montanari, Gen-
eralization error of random feature and kernel methods: hyper-
contractivity and kernel matrix concentration, Applied and Com-
putational Harmonic Analysis 59 (2022), 3–84.

138 BIBLIOGRAPHY

[MS24] Theodor Misiakiewicz and Basil Saeed, A non-asymptotic theory
of kernel ridge regression: deterministic equivalents, test error,
and gcv estimator, arXiv:2403.08938 (2024).

[NP33] Jerzy Neyman and Egon Sharpe Pearson, Ix. on the problem
of the most efficient tests of statistical hypotheses, Philosophical
Transactions of the Royal Society of London. Series A, Contain-
ing Papers of a Mathematical or Physical Character 231 (1933),
no. 694-706, 289–337.

[Péc06] Sandrine Péché, The largest eigenvalue of small rank perturba-
tions of hermitian random matrices, Probability Theory and Re-
lated Fields 134 (2006), no. 1, 127–173.

[PV88] Leonard Pitt and Leslie G Valiant, Computational limitations on
learning from examples, Journal of the ACM (JACM) 35 (1988),
no. 4, 965–984.

[Rey20] Lev Reyzin, Statistical queries and statistical algorithms: Foun-
dations and applications, arXiv:2004.00557 (2020).

[Ros58] Frank Rosenblatt, The perceptron: a probabilistic model for in-
formation storage and organization in the brain., Psychological
review 65 (1958), no. 6, 386.

[RR07] Ali Rahimi and Benjamin Recht, Random features for large-scale
kernel machines, Advances in neural information processing sys-
tems 20 (2007).

[SH20] Johannes Schmidt-Hieber, Nonparametric regression using deep
neural networks with relu activation function, The Annals of
Statistics 48 (2020), no. 4, 1875.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David, Understanding ma-
chine learning: From theory to algorithms, Cambridge university
press, 2014.

[SVWX17] Le Song, Santosh Vempala, John Wilmes, and Bo Xie, On the
complexity of learning neural networks, Advances in neural in-
formation processing systems 30 (2017).

BIBLIOGRAPHY 139

[SW22] Tselil Schramm and Alexander S Wein, Computational barriers
to estimation from low-degree polynomials, The Annals of Statis-
tics 50 (2022), no. 3, 1833–1858.

[Sze39] Gabor Szeg, Orthogonal polynomials, vol. 23, American Mathe-
matical Soc., 1939.

[Szö09] Balázs Szörényi, Characterizing statistical query learning: sim-
plified notions and proofs, International Conference on Algorith-
mic Learning Theory, Springer, 2009, pp. 186–200.

[T+15] Joel A Tropp et al., An introduction to matrix concentration
inequalities, Foundations and Trends® in Machine Learning 8
(2015), no. 1-2, 1–230.

[Tel22] Matus Telgarsky, Feature selection with gradient descent on two-
layer networks in low-rotation regimes, arXiv:2208.02789 (2022).

[Val84] Leslie G Valiant, A theory of the learnable, Communications of
the ACM 27 (1984), no. 11, 1134–1142.

[Val12] Gregory Valiant, Finding correlations in subquadratic time, with
applications to learning parities and juntas, 2012 IEEE 53rd An-
nual Symposium on Foundations of Computer Science, IEEE,
2012, pp. 11–20.

[Vem97] Santosh Vempala, A random sampling based algorithm for learn-
ing the intersection of half-spaces, Proceedings 38th Annual
Symposium on Foundations of Computer Science, IEEE, 1997,
pp. 508–513.

[VW19] Santosh Vempala and John Wilmes, Gradient descent for one-
hidden-layer neural networks: Polynomial convergence and sq
lower bounds, Conference on Learning Theory, PMLR, 2019,
pp. 3115–3117.

[Wai19] Martin J Wainwright, High-dimensional statistics: A non-
asymptotic viewpoint, vol. 48, Cambridge university press, 2019.

[Wei25] Alexander S Wein, Computational complexity of statistics: New
insights from low-degree polynomials, arXiv:2506.10748 (2025).

140 BIBLIOGRAPHY

[Yan05] Ke Yang, New lower bounds for statistical query learning, Jour-
nal of Computer and System Sciences 70 (2005), no. 4, 485–509.

Appendix A

Technical results

In this appendix, we include supplementary background and provide proofs
for the technical results that were omitted from the main text.

A.1 Function space on the sphere

In this section, we overview some basic properties of functional spaces over the
sphere. We refer the reader to [Sze39, Chi11, Dai13] for further background
on this topic. In particular, we will use the expansion of the regression
function into spherical harmonics on Sd−1 to derive elementary lower bounds
on learning Gaussian single-index models.

Recall that we denote Sd−1 = {x ∈ Rd : ∥x∥2 = 1} the unit sphere in
d dimension, γ̄d := Unif(Sd−1), and L2(γ̄d) the space of squared-integrable
functions on the unit sphere under uniform distribution.

Spherical harmonics. Spherical harmonics are defined as homogeneous
harmonic polynomials restricted to Sd−1. That is, a polynomial P (z) with
z ∈ Sd−1 is a degree-k spherical harmonic if and only if it satisfies: (1)
P (tz) = tkP (z) for any t ∈ R (homogeneity), and (2) ∆P = 0 (harmonic

function) where ∆ is the Laplace operator ∆f =
∑d

i=1
∂2

∂x2
i
f .

Denote Vd,ℓ the linear subspace in L
2(γ̄d) of degree-ℓ spherical harmonics.

A classical results of harmonic analysis is the following orthogonal decompo-
sition of L2(γ̄d):

L2(γ̄d) =
∞⊕
ℓ=0

Vd,ℓ. (A.1.1)

141

142 APPENDIX A. TECHNICAL RESULTS

Equivalently, Vd,ℓ corresponds to the subspace of degree-ℓ polynomials that
are orthogonal (in L2(γ̄d)) to all polynomials of degree at most ℓ− 1. Denote
Nd,ℓ := dim(Vd,ℓ), which is given by

Nd,ℓ =


1 ℓ = 0,

d ℓ = 1,
d+2ℓ−2

ℓ

(
d+ℓ−3
ℓ−1

)
ℓ ≥ 2.

(A.1.2)

In particular, Nd,ℓ = Θd(d
ℓ).

For each Vd,ℓ, ℓ ≥ 0, we choose an orthonormal basis of spherical harmon-
ics {Yℓs}s∈[Nd,ℓ], so that

Ez∼γ̄d[Yℓs(z)Yℓs′(z)] = δss′.

The set {Yℓs}ℓ≥0,s∈[Nd,ℓ] forms a complete orthonormal basis of L2(γ̄d).

Gegenbauer polynomials. Denote γ̄d,1 the distribution of ⟨z, e1⟩ with z ∼
γ̄d and e1 an arbitrary unit vector. That is, γ̄d,1 is the marginal distribution
of one coordinate of a unit vector uniformly distributed on Sd−1. Note that
it has the explicit density function

γ̄d,1(dx) =
ωd−2√
dωd−1

(
1− x2

d

)d−3
2

dx,

where ωd−1 =
2πd/2

Γ(d/2) is the surface area of Sd−1.
Define {Qℓ}ℓ≥0 to be the orthonormal basis of polynomials on L2([−1, 1], γ̄d,1),

that is,
Ez∼γ̄d,1[Qℓ(z)Qℓ′(z)] = δℓℓ′.

These polynomials are known as the (normalized) Gegenbauer polynomials.
We can construct them via the Gram-Schmidt procedure:

Q0(Z) = 1, Q1(Z) = Z, Q2(Z) =
1√
2

√
d+ 2

d− 1
(Z2 − 1),

which simplifies to the three-term recurrence relation:

Qℓ+1(Z) =

√
Nd,ℓ+1

Nd,ℓ

2ℓ+ d− 2

d+ ℓ− 2
ZQℓ(Z)−

√
Nd,ℓ+1

Nd,ℓ−1

ℓ

d+ 2ℓ− 2
Qℓ−1(Z).

A.1. FUNCTION SPACE ON THE SPHERE 143

Correspondence between Gegenbauer and Spherical harmonics. A
crucial property of Gegenbauer polynomials is the following celebrated iden-
tity: for all w, z ∈ Sd−1,

Qℓ(⟨w, z⟩) =
1√
Nd,ℓ

Nd,ℓ∑
s=1

Yℓs(w)Yℓs(z). (A.1.3)

This identity is sometimes referred to as the addition theorem. In particular,
this implies that for all z ∈ Sd−1,

Qℓ(1) =
1√
Nd,ℓ

Nd,ℓ∑
s=1

Yℓs(z)
2 =

√
Nd,ℓ, (A.1.4)

using that Qℓ(1) = Ez∼γ̄d[Qℓ(∥z∥22)] = N
−1/2
d,ℓ

∑Nd,ℓ

s=1 ∥Yℓs∥2L2. Similarly, using
orthonormality of the spherical harmonic basis, we obtain for every w,u ∈
Sd−1,

Ez∼γ̄d,1[Qℓ(⟨w, z⟩)Qℓ′(⟨z,u⟩)] =
δℓℓ′√
Nd,ℓ

Qℓ(⟨w,u⟩). (A.1.5)

This reproducing property of Gegenbauer polynomials will greatly simplify
our proofs when we will consider lower bounds on Gaussian single index
models.

Consider a function h : [−1, 1]→ R. It admits the following expansion in
the Gegenbauer polynomial basis

h(z) =
∞∑
ℓ=0

ζℓQℓ(z), ζℓ := Ez∼γ̄d,1[h(z)Qℓ(z)].

In particular, the function h̃ : Sd−1 → R defined as h̃(z) = h(⟨w, z⟩) admits
the following decomposition in the spherical harmonic basis

h̃(z) =
∞∑
ℓ=0

ζℓQℓ(⟨w, z⟩) =
∞∑
ℓ=0

ζℓ√
Nd,ℓ

Nd,ℓ∑
s=1

Yℓs(w)Yℓs(z). (A.1.6)

Correspondence between Gegenbauer and Hermite polynomials.
Recall that {Hek}k≥0 denotes the orthogonal basis of Hermite polynomials
in L2(γ1), with the standard normalization ⟨Hek,Hek′⟩L2 = k!δkk′.

144 APPENDIX A. TECHNICAL RESULTS

By central limit theorem, the distribution of
√
d·z, with z ∼ γ̄d,1 converges

weakly to γ1. It is straightforward to show that Gegenbauer polynomials
converge to the Hermite polynomials, that is the coefficients

lim
d→∞

Coeff{Qk(x/
√
d)} = Coeff{Hek(x)/

√
k!}.

In particular, for all h ∈ L2(γ1), the k-th Gegenbauer coefficient of converges
to the k-th Hermite coefficient of h:

lim
d→∞

Ez∼γ̄d,1[h(
√
d · z)Qℓ(z)] = µk(h) = EG∼γ1[h(G)Hek(G)].

When decomposing single-index models into spherical harmonics, it will
be useful to consider a more quantitative correspondence between Gegen-
baeuer and Hermite polynomials. We will use that we can decompose ⟨w,x⟩ ∼
γ1 into ⟨w,x⟩ = r·⟨w, z⟩ where r = ∥x∥2 ∼ χd and z = x/∥x∥2 ∼ Unif(Sd−1)
are independent. Thus, we can write γ1 = χd ⊗ γ̄d,1. The following proposi-
tion proved in [JKMS25] controls the coefficients in the expansion of Hermite
polynomials into Gegenbauer polynomials:

Proposition A.1.1 (Hermite to Gegenbauer expansion [JKMS25, Lemma
3]). For any k ∈ N, we have for all r ≥ 0 and z ∈ [−1, 1],

Hek(r · z) =
k∑

ℓ=0

βk,ℓ(r)Qℓ(z), (A.1.7)

where

∥βk,ℓ∥2L2(χd)
=

{
0 if ℓ ̸≡ k mod 2,

Θd(d
−(k−ℓ)/2) if ℓ ≡ k mod 2.

(A.1.8)

The coefficients βk,ℓ(r) are degree k-polynomials in r, and their explicit
expressions can be found in [JKMS25, Proposition 2].

Harmonic decomposition of Gaussian data. Let’s return to the function
space L2(γd) discussed in the main text. We saw that we can expand functions
f ∈ L2(γd) into the basis of multivariate polynomials (2.4.2), that is, we
expand according to the following orthogonal decomposition of the function
space

L2(γd) =
∞⊕
k=0

Ωd,k,

A.1. FUNCTION SPACE ON THE SPHERE 145

where Ωd,k is the span of degree-k multivariate Hermite polynomials.
By delineating the norm from the direction of the input vector x, we can

consider an alternative decomposition of L2(γd) using the harmonic expansion
(A.1.1). While this decomposition—and the resulting basis functions—are
more involved than multivariate Hermite polynomials, this decomposition
is in many respects a more natural basis for studying single-index models
[JKMS25]. Importantly, it gives sharper lower bounds, which is our main
objective in these lectures.

Specifically, consider the polar decomposition of the Gaussian vector

x = rz, with r = ∥x∥2 ∼ χd and z =
x

∥x∥2
∼ γ̄d, (A.1.9)

independently. Thus we can write γd = χd ⊗ γ̄d. Using the harmonic decom-
position of L2(γ̄d), the function space L2(γd) admits the following orthogonal
decomposition:

L2(γd) = L2(χd)⊗ L2(γ̄d) =
∞⊕
ℓ=0

L2(χ2)⊗ Vd,ℓ =
∞⊕
ℓ=0

Ω̃d,ℓ, (A.1.10)

where we denoted
Ω̃d,ℓ := L2(χd)⊗ Vd,ℓ.

In other words, Ω̃d,ℓ corresponds to the subspace of functions h ∈ L2(γd) that
can be decomposed as

h(x) =

Nd,ℓ∑
s=1

αs(∥x∥)Yℓs(x/∥x∥2), αs(r) = Ez∼γ̄d[h(r · z)Yℓs(z)].

Note that dim(Ω̃d,ℓ) =∞, as we do not constrain the dependency on ∥x∥2.
Denote Pk and P̃k the orthogonal projections onto Ωd,k and Ω̃d,k respec-

tively, P≤k and P̃≤k the orthogonal projections onto

Ωd,≤k =
k⊕

s=0

Ωd,k, Ω̃d,≤k =
k⊕

s=0

Ω̃d,k,

respectively, and P≥k = I − P≤k−1 and P̃≤k = I − P̃≤k−1 the orthogonal
projections onto

Ωd,≥k =
∞⊕
s=k

Ωd,k, Ω̃d,≥k =
∞⊕
s=k

Ω̃d,k.

146 APPENDIX A. TECHNICAL RESULTS

Consider a single-index function h(x) = f∗(⟨w,x⟩) in L2(γd). Then, this
function admits two alternative decompositions

f∗(⟨w,x⟩) =
∞∑
k=0

µk
k!
Hek(⟨w,x⟩)

=
∞∑
k=0

ζℓ(r)Qk(⟨w, z⟩),
(A.1.11)

where

µk = EG∼γ1[f∗(G)Hek(G)], ζℓ(r) = Ez∼γ̄d[f∗(r · ⟨e1, z⟩)Qk(⟨e1, z⟩)].

By Proposition A.1.1, we have the following correspondence between the
coefficients in the two expansions

µ2k
k!

= (1 + od(1))∥ζℓ∥2χd
, ∥P≥kf∗∥2γd = (1 + od(1))∥P̃≥kf∗∥2γd. (A.1.12)

Furthermore, we can see that when projecting f orthogonally to Hermite
polynomials of degree at most k−1, it has polynomially vanishing—but non-
zero—projection on spherical harmonics of smaller degree: suppose µk ̸= 0
and take ℓ < k with ℓ ≡ k mod 2, then∥∥P̃ℓ[P≥kf∗]

∥∥2
L2 = Θd(d

−(k−ℓ)/2). (A.1.13)

While this seems negligible, this fact has important consequences on learning
Gaussian single-index models, as argued by Joshi et al [JKMS25]. This is
also the reason our first naive dimension lower bound, based on the Hermite
expansion, cannot be improved beyond d−k/2 in Section 2.4.1.

Hypercontractivity. Finally, we highlight a key property of low-degree
polynomials under the uniform measure over the sphere and hypercube, and
the standard Gaussian distribution: they are ‘well-concentrated’. More pre-
cisely, consider the Lp-norm of a function f with respect to a probability
measure µ, defined as

∥f∥Lp(µ) = Ex∼µ[|f(x)|p]1/p

By Hölder’s inequality, we always have ∥f∥Lp ≤ ∥f∥Lq for any p ≤ q. In gen-
eral, the reverse inequality does not hold—even up to a constant. However,

A.2. GAUSSIAN SINGLE-INDEX MODELS 147

for certain distributions, the reverse inequality holds for some sufficiently
regular functions. These measures satisfy the celebrated hypercontractivity
property [Bon70, Bec75, Gro75, Bec92].

Lemma A.1.2 (Hypercontractivity of low-degree polynomials). For any ℓ ∈
N and f : Rd → R a degree-ℓ polynomial, the following hold.

(i) (Hypercube Hypercontractivity [Bec75].) For any p ≥ 2,

∥f∥Lp(νd) ≤ (p− 1)ℓ/2∥f∥L2(νd), (A.1.14)

where we recall that νd := Unif({−1,+1}d).

(ii) (Spherical Hypercontractivity [Bec92].) For any p ≥ 2,

∥f∥Lp(γ̄d) ≤ (p− 1)ℓ/2∥f∥L2(γ̄d), (A.1.15)

where we recall that γ̄d := Unif(Sd−1).

(iii) (Gaussian Hypercontractivity.) For any p ≥ 2,

∥f∥Lp(γd) ≤ (p− 1)ℓ/2∥f∥L2(γd), (A.1.16)

where we recall that γd := N (0, Id).

This property has many consequences and applications, and we will just
mention one: the above inequality can be seen as a tail bound on low-degree
polynomials. Specifically, consider f : Rd → R a degree-ℓ polynomial and
µ ∈ {νd, γd, γ̄d}: then for all t ≥ 0,

Px∼µ
(
|f(z)| ≥ t · ∥f∥L2(µ)

)
≤ exp

(
ℓ− ℓ

2e
t2/ℓ
)
.

(Prove it using Markov’s inequality and optimizing over p!)

A.2 Gaussian single-index models

Let us now return to the example of Gaussian single-index models. To derive
sharp lower bounds in this setting, we will leverage the alternative decompo-
sition (A.1.10) of L2(γd) in terms of spherical harmonics. This decomposition
is better adapted than the standard Hermite expansion for this model, as it
directly exploits the intrinsic rational symmetry of the problem as discussed
in [JKMS25].

148 APPENDIX A. TECHNICAL RESULTS

A.2.1 Dimension lower bound

To improve the simple lower bound n = Ωd(d
k/2) established in Section 2.4.1

to the tight bound n = Ωd(d
k), we do the following two modifications:

(1) We replace the projection onto Ωd,≥k—the subspace in L2(γd) orthogo-
nal to polynomials of degree at most k − 1—with the projection onto
Ω̃d,≥k—the subspace orthogonal to spherical harmonics (in z = x/∥x∥2)
of degree at most k − 1.

(2) Instead of bounding the average pairwise correlation,

sup
h∈H

Eh′∼µH

[
|⟨h, P̃≥kh⟩γd|

]
,

we directly control the operator norm ∥GΩ̃d,≥k
∥op of the Gram matrix

associate to M random targets functions from H(d)
SI , where the support

vectors (wj)j∈[M] are sampled i.i.d. from γ̄d.

Let us fix arbitrarily n covariate vectors (xi)i∈[n] ⊂ Rd and consider a
kernel method that, given data (yi,xi)i∈[n] with

yi = f∗(⟨w,xi⟩) + εi, (A.2.1)

outputs a predictor f̂w. The average excess test error under squared loss is

Ew∼γ̄d

[
Rexc(f̂w,Dw)

]
= Ew∼γ̄d

[
∥f̂w − hw∥2γd

]
, (A.2.2)

where hw(x) := f∗(⟨w,x⟩).
We now state our refined lower bound on the average excess test error:

Proposition A.2.1. Consider the problem of learning Gaussian single-index
models (1.2.1) with regression function f∗ ∈ L2(γ1). For any kernel method,
any n covariate vectors (xi)i∈[n] ⊂ Rd, and any arbitrary labels, the following
holds. For every k ∈ N, there exists a constant Ck > 0 depending only on k
such that for any η ∈ (0, 1), if the average excess test error (A.2.2) satisfies

Ew∼γ̄d

[
∥f̂w − hw∥2γd

]
≤ (1− η)∥P≥kf∗∥2L2, (A.2.3)

then we must have
n ≥ Ckd

k(η + od(1)).

A.2. GAUSSIAN SINGLE-INDEX MODELS 149

Proof. Step 1: Gram matrix of a random subset of targets. Let
hw(x) = f∗(⟨w,x⟩) and consider its decomposition into spherical harmonics
via Gegenbauer polynomials (A.1.11). Its projection onto Ω̃d,≥k is given by

P̃≥khw(x) =
∞∑
ℓ=k

ζℓ(r)Qℓ(⟨w, z⟩).

Using the reproducing property (A.1.5), the overlap between two such func-
tions is:

⟨hw, P̃≥khw′⟩γd =
∞∑
ℓ=k

∥ζℓ∥2χd√
Nd,ℓ

Qℓ(⟨w,w′⟩). (A.2.4)

Now take M = dk+1/2 i.i.d. random vectors {wj}j∈[M ∼iid γ̄d and consider
the Gram matrix

GΩ̃d,≥k
:=
(
⟨hwi

, P̃≥khwj
⟩γd
)
ij∈[M]

∈ RM×M .

Using (A.2.4), this matrix decomposes as

GΩ̃d,≥k
=

∞∑
ℓ=k

∥ζℓ∥2χd√
Nd,ℓ

Qℓ, Qℓ := (Qℓ(⟨wi,wj⟩))ij∈[M].

The properties of the random matrices Qℓ where studied in [GMMM21,
Mis22, LY22]. By the addition theorem (A.1.3), each Qℓ can be written
as an empirical covariance matrix between featurized data:

1√
Nd,ℓ

Qℓ =
1

Nd,ℓ
YℓY

T
ℓ , Yℓ := (Yℓs(wj))j∈[M],s∈[Nd,ℓ] ∈ RM×Nd,ℓ.

The matrix Yℓ has i.i.d. rows with uncorrelated entries of variance 1. While
entries are not independent, the asymptotic spectral behavior of Yℓ behaves
the same as the one of a Gaussian matrix with independent N (0, 1) entries:

• If M ≪ Nd,ℓ, then N
−1/2
d,ℓ Qℓ concentrates on IM (in operator norm).

• IfM ≫ Nd,ℓ, then Y T
ℓ Yℓ/M ∈ RNd,ℓ×Nd,ℓ (the average ofM independent

rank-one matrices) concentrates on INd,ℓ
(in operator norm).

• If M ≍ Nd,ℓ, then the empirical spectrum of N
−1/2
d,ℓ Qℓ concentrates on

a Marchenko-Pastur distribution.

150 APPENDIX A. TECHNICAL RESULTS

We now split the Gram matrix as

GΩ̃d,≥k
=
∥ζk∥2χd√
Nd,k

Qk +K>k, where K>k =
∞∑

ℓ=k+1

∥ζℓ∥2χd√
Nd,ℓ

Qℓ.

Hence, the operator norm satisfies

∥GΩ̃d,≥k
∥op

M
≤
∥ζk∥2χd

Nd,k

∥Yk∥2op
M

+
∥K>k∥op

M
.

Applying (1) Lemma A.2.2 to bound ∥Yk∥2op and (2) Proposition A.2.3 to
bound K>k (both stated below), we obtain with probability 1− od(1),

∥GΩ̃d,≥k
∥op

M
≤ 2
∥ζk∥2χd

Nd,k
+

2

M

(∞∑
ℓ=k+1

∥ζℓ∥2χd

)

≤ 2

Nd,ℓ

(∞∑
ℓ=k

∥ζℓ∥2χd

)
≤ Ck

dk
∥P̃≥kf∗∥2γd.

Step 2: Applying the dimension lower bound. By Corollary 2.3.2
applied to the subspace Ω̃d,≥k, if

1

M

M∑
j=1

inf
f∈R
∥P̃≥k(f − hwj

)∥2γd ≤ (1− η)∥P≥kf∗∥2γd,

then (with probability 1− od(1) over the random vectors wj)

n ≥ M

∥GΩ̃d,≥k
∥op

(
∥P̃≥kf∗∥2γd − (1− η)∥P≥kf∗∥2γd

)
≥ dk

2Ck
(η + od(1)),

using the correspondence ∥P≥kf∗∥2γd = (1 + od(1))∥P̃≥kf∗∥2γd from Equation
(A.1.12).
Step 3: Bound on the average excess test error. Let

Xwj
:= inf

f∈R
∥P̃≥k(f − hwj

)∥2γd, 0 ≤ Xwj
≤ ∥P̃≥kf∗∥2γd.

A.2. GAUSSIAN SINGLE-INDEX MODELS 151

By Hoeffding’s inequality, the empirical average concentrates: with probabil-
ity 1− od(1), ∣∣∣∣∣Ew[Xw]−

1

M

M∑
j=1

Xwj

∣∣∣∣∣ = od(1) · ∥P̃≥kf∗∥2γd.

Hence

1

M

M∑
j=1

inf
f∈R
∥P̃≥k(f − hwj

)∥2γd ≤ Ew∼γ̄d

[
∥f̂w − hw∥2γd

]
+ od(1)∥P̃≥kf∗∥2γd.

Thus, if

Ew∼γ̄d

[
∥f̂w − hw∥2γd

]
≤ (1− η)∥P≥kf∗∥2γd,

then
1

M

M∑
j=1

inf
f∈R
∥P̃≥k(f − hwj

)∥2γd ≤ (1− η + od(1)) · ∥P≥kf∗∥2γd,

which implies by the previous step that

n ≥ ckd
k(η + od(1)).

Note that we only need to show that there exists such a subset ofM functions,
which is the case here as the above holds with 1−od(1) (positive probability).
This completes the proof.

Lemma A.2.2 ([GMMM21, Lemma 11]). Let (wj)j∈[M] ∼iid γ̄d. For an
integer ℓ ∈ N, denote

Yℓ := (Yℓs(wj))j∈[M],s∈[Nd,ℓ] ∈ RM×Nd,ℓ,

where {Yℓs}s∈[Nd,ℓ] is an orthonormal basis of degree-ℓ spherical harmonics.
Then, for any t > 0,

P
(
∥Y TY /M − INd,ℓ

∥op ≥ t
)
≤ Nd,ℓ exp

(
− M

Nd,ℓ

t2

3(1 + t)

)
. (A.2.5)

Proof. For simplicity, denote N := Nd,ℓ below. Decompose A := Y TY /M
into a sum of independent rank-1 matrices:

A =
1

M

M∑
j=1

yjy
T
j , yj := (Yℓs(wj))s∈[N] ∈ RN .

152 APPENDIX A. TECHNICAL RESULTS

We use matrix Bernstein inequality [T+15, Theorem 6.6.1] to bound the
operator norm of this matrix. Denote Xj := yjy

T
j − IN so that E[Xj] = 0.

First,

∥Xj∥op ≤ ∥yj∥22 + 1 = 1 +
∑
s∈[N]

Yℓs(wj)
2 = 1 +N,

where we used the identity (A.1.4). Furthermore,

v(A) = ∥E[A2]∥op =
1

M 2

∥∥∥∥∥
M∑
j=1

E[X2
j]

∥∥∥∥∥
op

=
1

M
∥E[X2

j]∥op.

We can expand the square and obtain

∥E[X2
j]∥op = ∥E[∥yj∥22yjy

T
j − 2yjy

T
j + IN]∥op = N − 1.

Thus, applying [T+15, Theorem 6.6.1] with L = (N + 1)/M and v(A) =
(N − 1)/M , we deduce

P(∥A− IN∥op ≥ t) ≤ N · exp
(

−Mt2/2

N − 1 + (N + 1)t/3

)
.

Simplifying the right-hand side yields the desired bound.

Proposition A.2.3 ([MS24, Proposition 13]). For any integer ℓ ∈ N, there
exists a constant Cℓ such that the following hold. For integers d, n such that
d ≥ Cℓ and M ≤ dℓ+1/Cℓ, let (wj)j∈[M] ∼iid γ̄d.

Consider a function h : [−1, 1]→ R orthogonal to all polynomials of degree
at most ℓ in L2([−1, 1], γ̄d,1) and denote K = (h(⟨wi,wj⟩))ij∈[M]. Then we
have with probability at least 1− n−1 that

∥K − h(1) · IM∥op ≤ Cℓ log(d)
2ℓ+3

√
M

dℓ+1
h(1).

This result follows from a delicate application of the moment method. We
omit the proof here and refer to [MS24, Proposition 9] for the full argument.

A.2.2 Alignment complexity

Correlation alignment complexity via Hermite

Below we prove the technical lemma used in the proof of Proposition 3.4.2.

A.2. GAUSSIAN SINGLE-INDEX MODELS 153

Lemma A.2.4. Under the setting of Proposition 3.4.2, there exists a univer-
sal constant C > 0 such that for all ϕ ∈ L2(γd),

Ew∼γ̄d
[
⟨hw − g∗, ϕ⟩2γd

]
≤

∞∑
k=1

(C/d)k/2
µ2k
k!
∥Pkϕ∥2γd. (A.2.6)

Proof. Recall the decomposition

Ew∼γ̄d
[
⟨hw − g∗, ϕ⟩2γd

]
=

∞∑
k1,k2=1

µk1
k1!

µk2
k2!

∑
α,β∈Zd

≥0,∥α∥1=k1,∥β∥1=k2

cαcβ
α!β!

E[wα+β]. (A.2.7)

Let us bound each of these expectations. We first recall Wick’s formula for
vectors uniformly distributed on the unit sphere: for every set of indices
(j1, . . . , j2q) ∈ [d]2q,

Ew∼γ̄d

∏
i∈[2q]

wji

 =
1

d(d+ 2) · · · (d+ 2q − 2)

∑
pairings π

∏
(a,b)∈π

δjajb,

where the sum runs over all

(2q − 1)!! = (2q − 1) · (2q − 3) · · · 5 · 3 · 1

perfect pairings of {1, 2, . . . , 2q}. Note that in the case of an odd product of
coordinates, the expectation is simply 0. Thus, for a multi-index ξ ∈ Zd

≥0,
we simply have

Ew∼γ̄d[w
ξ] =

∏
j∈[d] |{perfect pairings of [ξj]}|
d(d+ 2) · · · (d+ ∥ξ∥1 − 2)

=

∏
j∈[d](ξj − 1)!! · 1[ξj ≡ 0 mod 2]

d(d+ 2) · · · (d+ ∥ξ∥1 − 2)

≤ 1[ξ ≡ 0 mod 2]

d∥ξ∥1/2

∏
j∈[d]

ξ
ξj/2
j ,

where we used that (n− 1)! ≤ nn/2 for even n.

154 APPENDIX A. TECHNICAL RESULTS

Let’s apply this bound to ξ = α+ β:

E[wα+β]√
α!β!

≤
(e
d

)∥α∥1+∥β∥1
2

∏
j∈[d]

(αj + βj)
(αj+βj)/2

α
αj/2
j β

βj/2
j

≤
(e
d

)∥α∥1+∥β∥1
2

∏
j∈[d]

e
αj+βj

2 log(αj+βj)−
αj
2 log(αj)−

βj
2 log(βj)

≤
(e
d

)∥α∥1+∥β∥1
2

,

where we used n! ≥ (n/e)n on the first line and that f(x) = x log(x) is convex
on the last line.

Injecting this upper bound in the decomposition (A.2.7), we obtain

Ew∼γ̄d
[
⟨hw − g∗, ϕ⟩2γd

]
≤

∞∑
k1,k2=1

|µk1|
k1!

|µk2|
k2!

∑
α,β∈Zd

≥0,∥α∥1=k1,∥β∥1=k2
α+β≡0 mod 2

|cα||cβ|√
α!β!

(
C

d

)k1+k2
2

≤
∞∑

k1=1

(
C

d

)k1
2 µ2k1
k1!

∑
α∈Zd

≥0

∥α∥1=k1

c2α
α!


∞∑

k2=1

(C/d)
k2
2

k2!

∑
β∈Zd

≥0

∥β∥1=k2

1[α+ β ≡ 0 mod 2]

 ,

where in the second inequality we applied Cauchy-Schwarz inequality. For
fixed α ∈ Zd

≥0, ∥α∥1 = k1, the number of multi-indices β ∈ Zd
≥0, ∥β∥1 = k2

such that α+ β ≡ 0 mod 2, is bounded by 2k1dk2/2. Thus

Ew∼γ̄d
[
⟨hw − g∗, ϕ⟩2γd

]
≤

∞∑
k1=1

(
4C

d

)k1
2 µ2k1
k1!

∑
α∈Zd

≥0

∥α∥1=k1

c2α
α!

{ ∞∑
k2=1

(C)
k2
2

k2!

}

≤ e
√
C
∞∑
k=1

(
4C

d

)k
2 µ2k
k!
∥Pkϕ∥2γd,

which concludes the proof of this lemma.

Correlation alignment complexity via harmonic decomposition

A.2. GAUSSIAN SINGLE-INDEX MODELS 155

[TBD]

Lemma A.2.5. Consider the problem of learning the hypothesis class of
Gaussian single-index models (1.2.1) with regression function f∗ ∈ L2(γ1).

Let µH be the distribution over target functions induced by w ∼ γ̄d. Then

AlignCor(µH, g0) = inf
ℓ≥1

Nd,ℓ

∥ζℓ∥2χd

,

where Nd,ℓ = dim(Vd,ℓ) = Θd(d
ℓ), the reference function is chosen to be

g0(x) := ζ0(r), and

ζℓ(r) := Ez∼γ̄d[f∗(r · ⟨e1, z⟩)Qℓ(⟨e1, z⟩)]

is the ℓ-th Gegenbauer coefficient of f∗.

Proof. Consider the decomposition of f∗ into Gegenbauer polynomials:

f∗(⟨w,x⟩) =
∞∑
ℓ=0

ζℓ(r)Qℓ(⟨w, z⟩).

Fix ϕ ∈ L2(γd) and compute the correlation

Eh∼µH

[
⟨ϕ, h− g0⟩2

]
= Ex1,x2∼γd [ϕ(x1)Ew∼γ̄d [(f∗(⟨w,x1⟩)− g0(x1)) (f∗(⟨w,x2⟩)− g0(x2))]ϕ(x2)]

=
∞∑
ℓ=1

1√
Nd,ℓ

Ex1,x2∼γd [ϕ(x1)ζℓ(r1)Qℓ(⟨z1, z2⟩)ζℓ(r2)ϕ(x2)] .

Consider the decomposition of ϕ:

ϕ(x) =
∞∑
ℓ=0

∑
s∈[Nd,ℓ]

βℓs(r)Yℓs(z).

Thus

Eh∼µH

[
⟨ϕ, h− g0⟩2

]
=

∞∑
ℓ=1

1

Nd,ℓ

∑
s∈[Nd,ℓ]

⟨ζℓ, βℓs⟩2χd
.

We have

sup
∥ϕ∥2γd≤1

Eh∼µH

[
⟨ϕ, h− g0⟩2

]
= sup

ℓ≥1

∥ζℓ∥2χd

Nd,ℓ
.

	Introduction
	Supervised learning
	Hypothesis classes and running examples
	Learning Gaussian single-index models
	Learning sparse functions on the hypercube

	Hardness of training neural networks
	Proper versus improper learning
	Hardness of improper learning
	Restricted models of computation

	Kernel methods
	Feature space and RKHS
	Kernel methods and the kernel trick
	Dimension lower bounds
	Examples
	Gaussian single-index models
	Sparse functions on the hypercube
	Summary

	Noisy gradient descent
	Noisy gradient descent
	Lower bound via junk flow
	Proofs of auxiliary lemmas
	Examples
	Gaussian single-index models
	Sparse functions on the hypercube

	Statistical Query algorithms
	Basic model and definitions
	Correlation Statistical Queries
	Lower bounds via Statistical Dimension
	SQ and noisy gradient descent
	Examples
	Gaussian single-index models
	Sparse functions on the hypercube

	Low-degree polynomials
	Background on hypothesis testing
	Low-degree polynomials
	Discussion on the low-degree conjecture

	Example: Gaussian single-index models

	Bibliography
	Technical results
	Function space on the sphere
	Gaussian single-index models
	Dimension lower bound
	Alignment complexity

