When Do Neural Networks Outperform Kernel Methods?
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Introduction

For a certain scaling of the initialization (Xavier initialization),
sufficiently wide neural networks have been shown to behave
like kernel methods, the Neural Tangent Kernel [5|.

From a theoretical perspective:

e NNs encode a richer class of functions than RKHS.

e Kernel methods can be shown to suffer from the curse of
dimensionality

. while neural networks can potentially overcome the
curse of dimensionality by learning a good
low-dimensional representation of the data [1].

e Special examples for which SGD-trained NN provably
outperform RKHS methods.

What about in practice? Empirical studies:

e Varied performance gap between the two model classes.

e In some classification tasks, RKHS methods can replace
NNs without a large drop in performance.

Can we reconcile these observations?

Focus of this work:

When can we expect a large performance gap between

NNs and RKHS methods? For which tasks do NNs
outperform RKHS methods?

Spiked Covariates (SC) model

Stylized scenario that captures two properties of datasets:

e Target tunction depending on a low-dimensional projection;

e Approximately low-dimensional covariates.

Covariates: there exists [U, U] orthogonal matrix,

x=Uz +U"2,.

e Signal part: z; ~ Unif (Sdsl(\/snrc : d3)>

e Noise part: z9 ~ Unif (Sd_ds_l(\/d — ds))

S1(r) = {& € R? : |||z = r} sphere of radius r in d dimension.
Target function: f,(x) = ¢(z1).

Parameters of the model:

e Signal dimension: d, =d", 0 <n < 1.

e Covariate SNR: snr. = d", 0 < k < 00 (measures anisotropy
of the data, see Fig. 1).
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Figure 1: Spiked covariates model: (a) Isotropic covariates (x = 0,
snre. = 1). (b) Anisotropic covariates (x > 0, snr. > 1).

Approximation error gap

e Two-layers NNs function class:
N
Fny — { fn(@0) = S ao((wi, ) : a; € R,w, € Rd}.
i=1

o Associated neural tangent model: Frr (W) @& Fnt n(W)
where W = (w;)ien) ~iid Unif(S%1) are fixed:

Fren(W) :{f = éam((wi,w}) a;, € R, 1 € [N]},

Furn(W) ={f = >0, @)0'(w,2)) b € R i€ N}

Blue: random and fixed. Red: parameters to be optimized.

e With proper initialization, wide NNs trained by GD are well
approximated by the neural tangent model [2], [3].

Approximation error for a class of function Fy:

Rael o ) = il B (fi2) — 1(@)) |

feFn
Effective dimension: deg = ds V (d/snr,.).

Approximation error in SC model

Theorem 1 ([4]) Assume deg™™° < N < deg™™7° and o
satisfies “generic conditions”. Then

Rppp( frs Fre N (W) =||P=ofill 72 + 0ap(")

RAPp(f*a ]:NT,N(W)) :”P>€+1f*H2L2 + Od,P(')-

On the contrary, assume d5° < N < d /10 we have

Rapo(fr, FNN.N) < |IPsectfall7e + 0al-).

Furthermore, Rppp(fx; FNNV) @S independent of snr..

P-y: projection orthogonal to the space of degree-t polynomials.

e d.: capture the “effective low-dimensionality” of the data.

e For RF/NT, random w,’s have small correlation with z; in
high dimension. This is alleviated by higher snr...

e For NN, w;’s can be chosen with large correlation with z.

o NN can “adaptively learn” w,’s while RF/NT cannot.

Generalization error gap

e Kernel Ridge Regression: given a rotationally invariant
kernel H(x,y) = h((x,y)) and regularization A,

1 n n )
a’ = arg min {—Z (yZ — Y ah((x, a:z>)) + )\aTHa}.
i=1

acR" (N~
1=1

and the solution fi () = X0, a h((x, ;).
e NTK with any number of layers with iid Gaussian
initialization is rotationally invariant.

e Generalization error:

Reafo o) = Ea (1) — 300, |

Generalization error in SC model

Theorem 2 ([4]) Assume de™™ < n < deg 179, h(-)

satisfies “generic conditions” and A = O4(1). Then

RGen(f*a ]?h,n)\) — ||P>€f*H2L2 T 0d,IED(')-

P-y: projection orthogonal to the space of degree-f polynomials.

e What about NNs trained by GD? Currently out of reach.

e We can construct a NN (PCA on (;);cf, + training on the
subsphere) such that for d,/"° < n < d/17°,

Roen( for fun ) = |P=efill 32 + 0ap(-).

e In some cases, we expect the performance of NNs trained in
the mean-field regime to depend on d and not d (empirical
and theoretical evidence supporting this conjecture).

Summary

We have d.¢ decreases with snr,:

o Small snr.. (desr = d): isotropic covariates,

Approximation error: NN < RF/NT,
Generalization error: NN < KRR.
o Large snr.. (desf = dy): highly anisotropic covariates,
Approximation error: NN ~ RF/NT,
(Generalization error: NN ~ KRR.

In this stylized model, a controlling parameter of the perfor-
mance gap between NN and kernel methods is

Signal covariates variance

SNre = —— . . .
NOISG covariates variance

Latent low-dimensional structure in the covariates and the

target function alleviates the curse of dimensionality and
make kernel methods more competitive.
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Testing insights on real datasets

In tmage classification, we expect

e The labels to depend predominantly on the low-frequency
components of the images:

e Spectrum of images to concentrate on low-frequencies.

Insight I: lower covariate SNR (data more isotropic) should
lead to larger generalization gap between NN and RKHS.
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Figure 2: Test accuracy on Fashion MNIST: adding noise to the high
frequency components (decreases snr.).

Insight II: if low-dimensional structure of the target tunc-
tion is not aligned with low-dimensional covariates, we should
expect a larger generalization gap between NN and RKHS.
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Figure 3: Test accuracy on Fashion MNIST: replacing the low-frequency
components by noise with matching covariance (de-align the labels from the
low-frequency components).
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