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Introduction

For a certain scaling of the initialization (Xavier initialization),
sufficiently wide neural networks have been shown to behave
like kernel methods, the Neural Tangent Kernel [5].

From a theoretical perspective:
•NNs encode a richer class of functions than RKHS.
•Kernel methods can be shown to suffer from the curse of
dimensionality
. . . while neural networks can potentially overcome the

curse of dimensionality by learning a good
low-dimensional representation of the data [1].

• Special examples for which SGD-trained NN provably
outperform RKHS methods.

What about in practice? Empirical studies:
•Varied performance gap between the two model classes.
• In some classification tasks, RKHS methods can replace
NNs without a large drop in performance.

Can we reconcile these observations?

Focus of this work:

When can we expect a large performance gap between
NNs and RKHS methods? For which tasks do NNs
outperform RKHS methods?

Spiked Covariates (SC) model

Stylized scenario that captures two properties of datasets:
•Target function depending on a low-dimensional projection;
•Approximately low-dimensional covariates.

Covariates: there exists [U ,U⊥] orthogonal matrix,
x = Uz1 + U⊥z2.

• Signal part: z1 ∼ Unif
(
Sds−1

(√
snrc · ds

))
.

•Noise part: z2 ∼ Unif
(
Sd−ds−1

(√
d− ds

))
Sd−1(r) = {x ∈ Rd : ‖x‖2 = r} sphere of radius r in d dimension.

Target function: f?(x) = ϕ(z1).

Parameters of the model:
• Signal dimension: ds = dη, 0 ≤ η ≤ 1.
•Covariate SNR: snrc = dκ, 0 ≤ κ <∞ (measures anisotropy
of the data, see Fig. 1).

Figure 1: Spiked covariates model: (a) Isotropic covariates (κ = 0,
snrc = 1). (b) Anisotropic covariates (κ > 0, snrc > 1).

Approximation error gap

•Two-layers NNs function class:

FNN,N =
{
fN(x; Θ) =

N∑
i=1

aiσ(〈wi,x〉) : ai ∈ R,wi ∈ Rd
}
.

•Associated neural tangent model: FRF,N(W )⊕FNT,N(W )
where W = (wi)i∈[N ] ∼iid Unif(Sd−1) are fixed:

FRF,N(W ) =
{
f =

N∑
i=1

aiσ(〈wi,x〉) : ai ∈ R, i ∈ [N ]
}
,

FNT,N(W ) =
{
f =

N∑
i=1
〈bi,x〉σ′(〈wi,x〉) : bi ∈ Rd, i ∈ [N ]

}
.

Blue: random and fixed. Red: parameters to be optimized.

•With proper initialization, wide NNs trained by GD are well
approximated by the neural tangent model [2], [3].

Approximation error for a class of function FN :

RApp(f?,FN) = inf
f∈FN

Ex

[(
f?(x)− f (x)

)2]
.

Effective dimension: deff = ds ∨ (d/snrc).

Approximation error in SC model

Theorem 1 ([4])Assume deff
`+δ ≤ N ≤ deff

`+1−δ and σ
satisfies “generic conditions”. Then

RApp(f?,FRF,N(W )) =‖P>`f?‖2
L2 + od,P(·),

RApp(f?,FNT,N(W )) =‖P>`+1f?‖2
L2 + od,P(·).

On the contrary, assume ds`+δ ≤ N ≤ ds
`+1−δ, we have

RApp(f?,FNN,N) ≤ ‖P>`+1f?‖2
L2 + od(·).

Furthermore, RApp(f?,FNN,N) is independent of snrc.
P>`: projection orthogonal to the space of degree-` polynomials.

• deff: capture the “effective low-dimensionality” of the data.
• For RF/NT, random wi’s have small correlation with z1 in
high dimension. This is alleviated by higher snrc.
• For NN, wi’s can be chosen with large correlation with z1.
•NN can “adaptively learn” wi’s while RF/NT cannot.

Generalization error gap

•Kernel Ridge Regression: given a rotationally invariant
kernel H(x,y) = h(〈x,y〉) and regularization λ,

âλ := arg min
a∈Rn

{1
n

n∑
i=1

(
yi −

n∑
i=1

aih(〈x,xi〉)
)2

+ λaTHa
}
.

and the solution f̂h,n,λ(x) = ∑n
i=1 â

λ
i h(〈x,xi〉).

•NTK with any number of layers with iid Gaussian
initialization is rotationally invariant.
•Generalization error:

RGen(f?, f̂h,n,λ) = Ex

[(
f?(x)−

n∑
i=1

âλi h(〈x,xi〉)
)2]

Generalization error in SC model

Theorem 2 ([4])Assume deff
`+δ ≤ n ≤ deff

`+1−δ, h(·)
satisfies “generic conditions” and λ = Od(1). Then

RGen(f?, f̂h,n,λ) = ‖P>`f?‖2
L2 + od,P(·).

P>`: projection orthogonal to the space of degree-` polynomials.

•What about NNs trained by GD? Currently out of reach.
•We can construct a NN (PCA on (xi)i∈[n] + training on the
subsphere) such that for ds`+δ ≤ n ≤ ds

`+1−δ,
RGen(f?, f̂NN,N) = ‖P>`f?‖2

L2 + od,P(·).
• In some cases, we expect the performance of NNs trained in
the mean-field regime to depend on ds and not d (empirical
and theoretical evidence supporting this conjecture).

Summary

We have deff decreases with snrc:
• Small snrc (deff = d): isotropic covariates,

Approximation error: NN� RF/NT,
Generalization error: NN� KRR.

• Large snrc (deff = ds): highly anisotropic covariates,
Approximation error: NN ∼ RF/NT,
Generalization error: NN ∼ KRR.

In this stylized model, a controlling parameter of the perfor-
mance gap between NN and kernel methods is

snrc = Signal covariates variance
Noise covariates variance

.

Latent low-dimensional structure in the covariates and the
target function alleviates the curse of dimensionality and

make kernel methods more competitive.

Testing insights on real datasets

In image classification, we expect
•The labels to depend predominantly on the low-frequency
components of the images;
• Spectrum of images to concentrate on low-frequencies.

Insight I: lower covariate SNR (data more isotropic) should
lead to larger generalization gap between NN and RKHS.

Figure 2: Test accuracy on Fashion MNIST: adding noise to the high
frequency components (decreases snrc).

Insight II: if low-dimensional structure of the target func-
tion is not aligned with low-dimensional covariates, we should
expect a larger generalization gap between NN and RKHS.

Figure 3: Test accuracy on Fashion MNIST: replacing the low-frequency
components by noise with matching covariance (de-align the labels from the
low-frequency components).
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